并查集

畅通工程

某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇。省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可)。问最少还需要建设多少条道路?
Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是城镇数目N ( < 1000 )和道路数目M;随后的M行对应M条道路,每行给出一对正整数,分别是该条道路直接连通的两个城镇的编号。为简单起见,城镇从1到N编号。
注意:两个城市之间可以有多条道路相通,也就是说

3 3 
1 2 
1 2 
2 1 

这种输入也是合法的
当N为0时,输入结束,该用例不被处理。
Output
对每个测试用例,在1行里输出最少还需要建设的道路数目。
Sample Input

4 2
1 3
4 3
3 3
1 2
1 3
2 3
5 2
1 2
3 5
999 0
0

Sample Output

1
0
2
998

Huge input, scanf is recommended.

模板题
代码:

/*
作者:jialileng
*/
#include<bits/stdc++.h>

using namespace std;
const int N=1100;
int p[N];
int pp[N];
int find(int x)
{
    int r=x;
    while(p[r]!=r)
    r=p[r];
    return r;
}
void join(int x,int y)
{
    int fx=find(x),fy=find(y);
    if(fx!=fy)p[fx]=fy;
}
int main()
{
    int n,m;
    int a,b;
    while(cin>>n&&n)
    {
        cin>>m;
        for(int i=1;i<=n;i++)p[i]=i;//初始化
        for(int i=0;i<m;i++){
            scanf("%d%d",&a,&b);
            join(a,b);
        }
        int ans=0;
        for(int i=1;i<=n;i++){
            if(p[i]==i)ans++;
        }
        cout<<ans-1<<endl;
    }
    return 0;
}

还是畅通工程

某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离。省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可),并要求铺设的公路总长度为最小。请计算最小的公路总长度。
Input
测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( < 100 );随后的N(N-1)/2行对应村庄间的距离,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间的距离。为简单起见,村庄从1到N编号。
当N为0时,输入结束,该用例不被处理。
Output
对每个测试用例,在1行里输出最小的公路总长度。
Sample Input

3
1 2 1
1 3 2
2 3 4
4
1 2 1
1 3 4
1 4 1
2 3 3
2 4 2
3 4 5
0

Sample Output

3
5

还是模板题
代码:

/*
作者:jialileng
*/
#include<bits/stdc++.h>

using namespace std;

const int N=1100;
struct node{
	int x,y;
	int w;
//	bool friend operator < (node a,node b){
//		return a.w>b.w; 
//	} 
}pp[6000];
int p[N];
int find(int x)
{
	int r=x;
	while(p[r]!=r)
	r=p[r];
	return r;
}
bool cmp(node a,node b){
	return a.w<b.w;
}
int main()
{
	int n,m;
	int a,b,c;
	while(~scanf("%d",&m)&&m)
	{
		n=m*(m-1)/2;
		memset(pp,0,sizeof pp);
		for(int i=1;i<=n;i++){
			scanf("%d%d%d",&a,&b,&c);
			pp[i].x=a;pp[i].y=b;pp[i].w=c;
		}
		sort(pp+1,pp+n+1,cmp);
		for(int i=1;i<=m;i++)p[i]=i;
		int ans=0,k=0;
		for(int i=1;i<=n;i++)
		{	
			int fx=find(pp[i].x),fy=find(pp[i].y);
			if(fx!=fy){
				p[fx]=fy;
				ans+=pp[i].w;
				k++;
			}
			if(k==m-1)break;
		}
		printf("%d\n",ans);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值