畅通工程
某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇。省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可)。问最少还需要建设多少条道路?
Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是城镇数目N ( < 1000 )和道路数目M;随后的M行对应M条道路,每行给出一对正整数,分别是该条道路直接连通的两个城镇的编号。为简单起见,城镇从1到N编号。
注意:两个城市之间可以有多条道路相通,也就是说
3 3
1 2
1 2
2 1
这种输入也是合法的
当N为0时,输入结束,该用例不被处理。
Output
对每个测试用例,在1行里输出最少还需要建设的道路数目。
Sample Input
4 2
1 3
4 3
3 3
1 2
1 3
2 3
5 2
1 2
3 5
999 0
0
Sample Output
1
0
2
998
Huge input, scanf is recommended.
模板题
代码:
/*
作者:jialileng
*/
#include<bits/stdc++.h>
using namespace std;
const int N=1100;
int p[N];
int pp[N];
int find(int x)
{
int r=x;
while(p[r]!=r)
r=p[r];
return r;
}
void join(int x,int y)
{
int fx=find(x),fy=find(y);
if(fx!=fy)p[fx]=fy;
}
int main()
{
int n,m;
int a,b;
while(cin>>n&&n)
{
cin>>m;
for(int i=1;i<=n;i++)p[i]=i;//初始化
for(int i=0;i<m;i++){
scanf("%d%d",&a,&b);
join(a,b);
}
int ans=0;
for(int i=1;i<=n;i++){
if(p[i]==i)ans++;
}
cout<<ans-1<<endl;
}
return 0;
}
还是畅通工程
某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离。省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可),并要求铺设的公路总长度为最小。请计算最小的公路总长度。
Input
测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( < 100 );随后的N(N-1)/2行对应村庄间的距离,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间的距离。为简单起见,村庄从1到N编号。
当N为0时,输入结束,该用例不被处理。
Output
对每个测试用例,在1行里输出最小的公路总长度。
Sample Input
3
1 2 1
1 3 2
2 3 4
4
1 2 1
1 3 4
1 4 1
2 3 3
2 4 2
3 4 5
0
Sample Output
3
5
还是模板题
代码:
/*
作者:jialileng
*/
#include<bits/stdc++.h>
using namespace std;
const int N=1100;
struct node{
int x,y;
int w;
// bool friend operator < (node a,node b){
// return a.w>b.w;
// }
}pp[6000];
int p[N];
int find(int x)
{
int r=x;
while(p[r]!=r)
r=p[r];
return r;
}
bool cmp(node a,node b){
return a.w<b.w;
}
int main()
{
int n,m;
int a,b,c;
while(~scanf("%d",&m)&&m)
{
n=m*(m-1)/2;
memset(pp,0,sizeof pp);
for(int i=1;i<=n;i++){
scanf("%d%d%d",&a,&b,&c);
pp[i].x=a;pp[i].y=b;pp[i].w=c;
}
sort(pp+1,pp+n+1,cmp);
for(int i=1;i<=m;i++)p[i]=i;
int ans=0,k=0;
for(int i=1;i<=n;i++)
{
int fx=find(pp[i].x),fy=find(pp[i].y);
if(fx!=fy){
p[fx]=fy;
ans+=pp[i].w;
k++;
}
if(k==m-1)break;
}
printf("%d\n",ans);
}
return 0;
}