- 博客(8)
- 收藏
- 关注
原创 paddle飞浆集训营学习心得
1.手把手入门是真的由浅入深的在逐步增加难度。从AIstudio平台的基础操作开始,到numpy的应用、简单案例的讲解…由浅入深不断的派生衍生,一直到让你了解并能够使用多种深度学习的模型。去年开始有机会进入飞桨集训营的课程,当前主要学习的都是cv相关的,当然马上要开推荐系统,这部分也是我学习中直接会用到的,所以很期待,后期还会有搜索等ai相关的课程,欢迎大家一起学习。2.风趣的直播课程整个...
2020-04-22 10:44:09 225
原创 TASK5 模型融合
5.1 模型融合目标对于多种调参完成的模型进行模型融合。完成对于多种模型的融合,提交融合结果并打卡5.2 内容介绍模型融合是比赛后期一个重要的环节,大体来说有如下的类型方式。简单加权融合:回归(分类概率):算术平均融合(Arithmetic mean),几何平均融合(Geometric mean);分类:投票(Voting)综合:排序融合(Rank averagin...
2020-04-04 13:04:44 133
原创 TASK4 建模调参
建模调参内容介绍线性回归模型: 线性回归对于特征的要求; 处理长尾分布; 理解线性回归模型;模型性能验证: 评价函数与目标函数; 交叉验证方法; 留一验证方法; 针对时间序列问题的验证; 绘制学习率曲线; 绘制验证曲线;嵌入式特征选择: Lasso回归; Ridge回归; 决策树;模型对比: 常用线性模型; 常用非线性模型;模型调参: 贪心调参方法; 网格调参方法; 贝叶斯调参方法;...
2020-04-01 11:36:16 193 1
原创 TASK3 特征工程
特征工程目标1.对于特征进行进一步分析,并对于数据进行处理2.完成对于特征工程的分析,并对于数据进行一些图表或者文字常见的特征工程包括:异常处理: 通过箱线图(或 3-Sigma)分析删除异常值; BOX-COX 转换(处理有偏分布); 长尾截断;特征归一化/标准化:标准化(转换为标准正态分布);归一化(抓换到 [0,1] 区间);针对幂律分布,可以采用公式: ????????????(1...
2020-03-27 08:35:57 144
原创 TASK2 数据分析EDA
数据EDA是指对已有的数据(特别是调查或观察得来的原始数据)在尽量少的先验假定下进行探索,通过作图、制表、方程拟合、计算特征量等手段探索数据的结构和规律的一种数据分析方法。经验总结1.对于数据的初步分析(直接查看数据,或.sum(), .mean(),.descirbe()等统计函数)可以从:样本数量,训练集数量,是否有时间特征,是否是时许问题,特征所表示的含义(非匿名特征),特征类型(字符...
2020-03-23 10:47:56 194
原创 第三次打卡
cv方向错题1.关于非极大值抑制说法错误的是A用于解决边界框预测时同一个目标上可能会输出较多相似的预测边界框的问题B预测边界框按置信度轮流作为基准。C将所有与基准预测边界框的交并比大于某阈值的非基准预测边界框移除D将所有与基准预测边界框的交并比小于某阈值的非基准预测边界框移除正确答案:将所有与基准预测边界框的交并比小于某阈值的非基准预测边界框移除保留效果最好的,不需要将所有进行移除...
2020-02-23 16:46:51 290
原创 第二次打卡 错题总结
1.一个在冬季部署的物品推荐系统在夏季的物品推荐列表中出现了圣诞礼物,我们可以推断该系统没有考虑到:协变量偏移标签偏移概念偏移没有问题答案:协变量偏移解释:统计学家称这种协变量变化是因为问题的根源在于特征分布的变化(即协变量的变化)。数学上,我们可以说P(x)改变了,但P(y∣x)保持不变。尽管它的有用性并不局限于此,当我们认为x导致y时,协变量移位通常是正确的假设。可以理解为在夏季...
2020-02-18 10:40:26 739
原创 第一次学习打卡
线性回归线性回归的基本要素模型为了简单起见,这里我们假设价格只取决于房屋状况的两个因素,即面积(平方米)和房龄(年)。接下来我们希望探索价格与这两个因素的具体关系。线性回归假设输出与各个输入之间是线性关系:price=warea⋅area+wage⋅age+b\mathrm{price} = w_{\mathrm{area}} \cdot \mathrm{area} + w_{\mathr...
2020-02-13 16:31:21 222
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人