前言
本系列博客基于B站谷粒商城,只作为本人学习总结使用。这里我会比较注重业务逻辑的编写和相关配置的流程。有问题可以评论或者联系我互相交流。原视频地址谷粒商城雷丰阳版。本人git仓库地址Draknessssw的谷粒商城
哪些数据适合放入缓存?
即时性、数据一致性要求不高的
访问量大且更新频率不高的数据(读多,写少)
缓存穿透,大量访问不存在的数据。解决:缓存空结果,实现简单,但是会有数据一致性问题和占用内存。或者布隆过滤器,实现复杂,占用内存小,但是不能保证百分百过滤。
缓存雪崩,数据同时失效过多。解决:错开热点缓存的失效时间。
缓存击穿,热点数据失效。解决:加锁,查到以后释放锁。其他人访问先查询先查到的缓存数据。
商城服务查询三级分类引入缓存
相关依赖,这里去除lettuce,引入jedis客户端,为了解决堆内存溢出的问题
<!--redis启动器-->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
<exclusions>
<!--lettuce,redis客户端,使用netty作网络通信-->
<exclusion>
<groupId>io.lettuce</groupId>
<artifactId>lettuce-core</artifactId>
</exclusion>
</exclusions>
</dependency>
<!--jedis,redis客户端,解决压测堆外内存溢出,springboot2.3.2已解决-->
<dependency>
<groupId>redis.clients</groupId>
<artifactId>jedis</artifactId>
</dependency>
<!--redisson,redis客户端,封装了分布式锁实现,也可以使用springboot的方式,不需要自己配置-->
<dependency>
<groupId>org.redisson</groupId>
<artifactId>redisson</artifactId>
<version>3.13.3</version>
</dependency>
<!--Spring Cache,使用注解简化开发-->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-cache</artifactId>
</dependency>
配置redis服务器的ip和端口
spring:
redis:
host: 192.168.72.129
port: 6379
分布式锁解决缓存击穿
这样子只能锁住当前进程
/**
* 从数据库查询并封装数据::分布式锁
* @return
*/
public Map<String, List<Catelog2Vo>> getCatalogJsonFromDbWithRedisLock() {
//1、占分布式锁。去redis占坑 设置过期时间必须和加锁是同步的,保证原子性(避免死锁)
String uuid = UUID.randomUUID().toString();
Boolean lock = stringRedisTemplate.opsForValue().setIfAbsent("lock", uuid,300,TimeUnit.SECONDS);
if (lock) {
System.out.println("获取分布式锁成功...");
Map<String, List<Catelog2Vo>> dataFromDb = null;
try {
//加锁成功...执行业务
dataFromDb = getDataFromDb();
} finally {
String script = "if redis.call('get', KEYS[1]) == ARGV[1] then return redis.call('del', KEYS[1]) else return 0 end";
//删除锁
stringRedisTemplate.execute(new DefaultRedisScript<Long>(script, Long.class), Arrays.asList("lock"), uuid);
}
//先去redis查询下保证当前的锁是自己的
//获取值对比,对比成功删除=原子性 lua脚本解锁
// String lockValue = stringRedisTemplate.opsForValue().get("lock");
// if (uuid.equals(lockValue)) {
// //删除我自己的锁
// stringRedisTemplate.delete("lock");
// }
return dataFromDb;
} else {
System.out.println("获取分布式锁失败...等待重试...");
//加锁失败...重试机制
//休眠一百毫秒
try { TimeUnit.MILLISECONDS.sleep(100); } catch (InterruptedException e) { e.printStackTrace(); }
return getCatalogJsonFromDbWithRedisLock(); //自旋的方式
}
}
使用redisson
引入依赖
<!--redisson,redis客户端,封装了分布式锁实现,也可以使用springboot的方式,不需要自己配置-->
<dependency>
<groupId>org.redisson</groupId>
<artifactId>redisson</artifactId>
<version>3.13.3</version>
</dependency>
创建redisson客户端配置实例
package com.xxxx.gulimall.product.config;
import org.redisson.Redisson;
import org.redisson.api.RedissonClient;
import org.redisson.config.Config;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import java.io.IOException;
@Configuration
public class MyRedissonConfig {
/**
* 所有对Redisson的使用都是通过RedissonClient
* @return
* @throws IOException
*/
@Bean(destroyMethod="shutdown")
public RedissonClient redisson() throws IOException {
//1、创建配置
Config config = new Config();
config.useSingleServer().setAddress("redis://192.168.75.129:6379");
//2、根据Config创建出RedissonClient实例
//Redis url should start with redis:// or rediss://
RedissonClient redissonClient = Redisson.create(config);
return redissonClient;
}
}
可重入锁(非公平锁,按业务顺序占锁)
lock.lock方法在业务没有执行完成后自动续期,为三分之一看门狗时间,即10s
公平锁(有锁,各个业务同等竞争)
仅是获取锁的方式有所不同
读写锁
就类似于纸只有一张,写的时候只能一个人写,读的时候可以大家一起读,但是有写操作,得等待大家读完再写,或者等写完大家再读。
信号量分布式限流
/**
* 车库停车
* 3车位
* 信号量也可以做分布式限流
*/
@GetMapping(value = "/park")
@ResponseBody
public String park() throws InterruptedException {
RSemaphore park = redisson.getSemaphore("park");
park.acquire(); //获取一个信号、获取一个值,占一个车位
boolean flag = park.tryAcquire();
if (flag) {
//执行业务
} else {
return "error";
}
return "ok=>" + flag;
}
@GetMapping(value = "/go")
@ResponseBody
public String go() {
RSemaphore park = redisson.getSemaphore("park");
park.release(); //释放一个车位
return "ok";
}
闭锁,等待所有任务完成释放锁
/**
* 放假、锁门
* 1班没人了
* 5个班,全部走完,我们才可以锁大门
* 分布式闭锁
*/
@GetMapping(value = "/lockDoor")
@ResponseBody
public String lockDoor() throws InterruptedException {
RCountDownLatch door = redisson.getCountDownLatch("door");
door.trySetCount(5);
door.await(); //等待闭锁完成
return "放假了...";
}
@GetMapping(value = "/gogogo/{id}")
@ResponseBody
public String gogogo(@PathVariable("id") Long id) {
RCountDownLatch door = redisson.getCountDownLatch("door");
door.countDown(); //计数-1
return id + "班的人都走了...";
}
解决缓存一致性问题
注解
参数和语法
依赖
<!--Spring Cache,使用注解简化开发-->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-cache</artifactId>
</dependency>
使用
主启动类添加注解
配置类
package com.xxxx.gulimall.product.config;
import org.springframework.boot.autoconfigure.cache.CacheProperties;
import org.springframework.boot.context.properties.EnableConfigurationProperties;
import org.springframework.cache.annotation.EnableCaching;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.redis.cache.RedisCacheConfiguration;
import org.springframework.data.redis.serializer.GenericJackson2JsonRedisSerializer;
import org.springframework.data.redis.serializer.RedisSerializationContext;
import org.springframework.data.redis.serializer.StringRedisSerializer;
@EnableConfigurationProperties(CacheProperties.class)
@Configuration
@EnableCaching
public class MyCacheConfig {
// @Autowired
// public CacheProperties cacheProperties;
/**
* 配置文件的配置没有用上
* @return
*/
@Bean
public RedisCacheConfiguration redisCacheConfiguration(CacheProperties cacheProperties) {
RedisCacheConfiguration config = RedisCacheConfiguration.defaultCacheConfig();
// config = config.entryTtl();
config = config.serializeKeysWith(RedisSerializationContext.SerializationPair.fromSerializer(new StringRedisSerializer()));
config = config.serializeValuesWith(RedisSerializationContext.SerializationPair.fromSerializer(new GenericJackson2JsonRedisSerializer()));
CacheProperties.Redis redisProperties = cacheProperties.getRedis();
//将配置文件中所有的配置都生效
if (redisProperties.getTimeToLive() != null) {
config = config.entryTtl(redisProperties.getTimeToLive());
}
if (redisProperties.getKeyPrefix() != null) {
config = config.prefixKeysWith(redisProperties.getKeyPrefix());
}
if (!redisProperties.isCacheNullValues()) {
config = config.disableCachingNullValues();
}
if (!redisProperties.isUseKeyPrefix()) {
config = config.disableKeyPrefix();
}
return config;
}
}
空值和key前缀的设置(解决缓存穿透)
#spring.cache.redis.key-prefix=CACHE_
spring.cache.redis.use-key-prefix=true
#?????????????
spring.cache.redis.cache-null-values=true
使用示例
/**
* 级联更新所有关联数据
* @param category
*/
@CacheEvict(value = "category",allEntries = true) //删除某个分区下的所有数据
@Transactional
@Override
public void updateCascade(CategoryEntity category) {
this.updateById(category);
categoryBrandRelationService.updateCategory(category.getCatId(),category.getName());
}
/**
* 每一个需要缓存的数据我们都来指定要放到那个名字的缓存。【缓存的分区(按照业务类型分)】
* 代表当前方法的结果需要缓存,如果缓存中有,方法都不用调用,如果缓存中没有,会调用方法。最后将方法的结果放入缓存
* 默认行为
* 如果缓存中有,方法不再调用
* key是默认生成的:缓存的名字::SimpleKey::[](自动生成key值)
* 缓存的value值,默认使用jdk序列化机制,将序列化的数据存到redis中
* 默认时间是 -1:
*
* 自定义操作:key的生成
* 指定生成缓存的key:key属性指定,接收一个Spel
* 指定缓存的数据的存活时间:配置文档中修改存活时间
* 将数据保存为json格式
*
*
* 4、Spring-Cache的不足之处:
* 1)、读模式
* 缓存穿透:查询一个null数据。解决方案:缓存空数据
* 缓存击穿:大量并发进来同时查询一个正好过期的数据。解决方案:加锁 ? 默认是无加锁的;使用sync = true来解决击穿问题
* 缓存雪崩:大量的key同时过期。解决:加随机时间。加上过期时间
* 2)、写模式:(缓存与数据库一致)
* 1)、读写加锁。
* 2)、引入Canal,感知到MySQL的更新去更新Redis
* 3)、读多写多,直接去数据库查询就行
*
* 总结:
* 常规数据(读多写少,即时性,一致性要求不高的数据,完全可以使用Spring-Cache):写模式(只要缓存的数据有过期时间就足够了)
* 特殊数据:特殊设计
*
* 原理:
* CacheManager(RedisCacheManager)->Cache(RedisCache)->Cache负责缓存的读写
* @return
*/
@Cacheable(value = {"category"},key = "#root.method.name",sync = true)
@Override
public List<CategoryEntity> getLevel1Categorys() {……}