2022谷粒商城学习笔记(十五)缓存和分布式锁

本文探讨了如何在B站谷粒商城中应用缓存策略,如选择合适的数据放入缓存以减少请求压力,处理缓存穿透、雪崩和击穿问题,以及使用Jedis和Redisson实现分布式锁。还介绍了Spring Cache注解的使用和配置,以及解决缓存一致性问题的方法。
摘要由CSDN通过智能技术生成

前言

本系列博客基于B站谷粒商城,只作为本人学习总结使用。这里我会比较注重业务逻辑的编写和相关配置的流程。有问题可以评论或者联系我互相交流。原视频地址谷粒商城雷丰阳版。本人git仓库地址Draknessssw的谷粒商城


哪些数据适合放入缓存?
 即时性、数据一致性要求不高的
 访问量大且更新频率不高的数据(读多,写少)

缓存穿透,大量访问不存在的数据。解决:缓存空结果,实现简单,但是会有数据一致性问题和占用内存。或者布隆过滤器,实现复杂,占用内存小,但是不能保证百分百过滤。
缓存雪崩,数据同时失效过多。解决:错开热点缓存的失效时间。
缓存击穿,热点数据失效。解决:加锁,查到以后释放锁。其他人访问先查询先查到的缓存数据。


商城服务查询三级分类引入缓存

相关依赖,这里去除lettuce,引入jedis客户端,为了解决堆内存溢出的问题

		<!--redis启动器-->
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-data-redis</artifactId>
            <exclusions>
                <!--lettuce,redis客户端,使用netty作网络通信-->
                <exclusion>
                    <groupId>io.lettuce</groupId>
                    <artifactId>lettuce-core</artifactId>
                </exclusion>
            </exclusions>
        </dependency>
        <!--jedis,redis客户端,解决压测堆外内存溢出,springboot2.3.2已解决-->
        <dependency>
            <groupId>redis.clients</groupId>
            <artifactId>jedis</artifactId>
        </dependency>
        <!--redisson,redis客户端,封装了分布式锁实现,也可以使用springboot的方式,不需要自己配置-->
        <dependency>
            <groupId>org.redisson</groupId>
            <artifactId>redisson</artifactId>
            <version>3.13.3</version>
        </dependency>
        <!--Spring Cache,使用注解简化开发-->
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-cache</artifactId>
        </dependency>

配置redis服务器的ip和端口

spring:
	redis:
    	host: 192.168.72.129
    	port: 6379

分布式锁解决缓存击穿

这样子只能锁住当前进程

/**
     * 从数据库查询并封装数据::分布式锁
     * @return
     */
    public Map<String, List<Catelog2Vo>> getCatalogJsonFromDbWithRedisLock() {

        //1、占分布式锁。去redis占坑      设置过期时间必须和加锁是同步的,保证原子性(避免死锁)
        String uuid = UUID.randomUUID().toString();
        Boolean lock = stringRedisTemplate.opsForValue().setIfAbsent("lock", uuid,300,TimeUnit.SECONDS);
        if (lock) {
            System.out.println("获取分布式锁成功...");
            Map<String, List<Catelog2Vo>> dataFromDb = null;
            try {
                //加锁成功...执行业务
                dataFromDb = getDataFromDb();
            } finally {
                String script = "if redis.call('get', KEYS[1]) == ARGV[1] then return redis.call('del', KEYS[1]) else return 0 end";

                //删除锁
                stringRedisTemplate.execute(new DefaultRedisScript<Long>(script, Long.class), Arrays.asList("lock"), uuid);

            }
            //先去redis查询下保证当前的锁是自己的
            //获取值对比,对比成功删除=原子性 lua脚本解锁
            // String lockValue = stringRedisTemplate.opsForValue().get("lock");
            // if (uuid.equals(lockValue)) {
            //     //删除我自己的锁
            //     stringRedisTemplate.delete("lock");
            // }

            return dataFromDb;
        } else {
            System.out.println("获取分布式锁失败...等待重试...");
            //加锁失败...重试机制
            //休眠一百毫秒
            try { TimeUnit.MILLISECONDS.sleep(100); } catch (InterruptedException e) { e.printStackTrace(); }
            return getCatalogJsonFromDbWithRedisLock();     //自旋的方式
        }
    }

使用redisson
引入依赖

		<!--redisson,redis客户端,封装了分布式锁实现,也可以使用springboot的方式,不需要自己配置-->
        <dependency>
            <groupId>org.redisson</groupId>
            <artifactId>redisson</artifactId>
            <version>3.13.3</version>
        </dependency>

创建redisson客户端配置实例

在这里插入图片描述

package com.xxxx.gulimall.product.config;

import org.redisson.Redisson;
import org.redisson.api.RedissonClient;
import org.redisson.config.Config;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

import java.io.IOException;



@Configuration
public class MyRedissonConfig {

    /**
     * 所有对Redisson的使用都是通过RedissonClient
     * @return
     * @throws IOException
     */
    @Bean(destroyMethod="shutdown")
    public RedissonClient redisson() throws IOException {
        //1、创建配置
        Config config = new Config();
        config.useSingleServer().setAddress("redis://192.168.75.129:6379");

        //2、根据Config创建出RedissonClient实例
        //Redis url should start with redis:// or rediss://
        RedissonClient redissonClient = Redisson.create(config);
        return redissonClient;
    }

}

可重入锁(非公平锁,按业务顺序占锁)
在这里插入图片描述
lock.lock方法在业务没有执行完成后自动续期,为三分之一看门狗时间,即10s
在这里插入图片描述
公平锁(有锁,各个业务同等竞争)

仅是获取锁的方式有所不同
在这里插入图片描述
读写锁
就类似于纸只有一张,写的时候只能一个人写,读的时候可以大家一起读,但是有写操作,得等待大家读完再写,或者等写完大家再读。

在这里插入图片描述

在这里插入图片描述
信号量分布式限流

/**
     * 车库停车
     * 3车位
     * 信号量也可以做分布式限流
     */
    @GetMapping(value = "/park")
    @ResponseBody
    public String park() throws InterruptedException {

        RSemaphore park = redisson.getSemaphore("park");
        park.acquire();     //获取一个信号、获取一个值,占一个车位
        boolean flag = park.tryAcquire();

        if (flag) {
            //执行业务
        } else {
            return "error";
        }

        return "ok=>" + flag;
    }

    @GetMapping(value = "/go")
    @ResponseBody
    public String go() {
        RSemaphore park = redisson.getSemaphore("park");
        park.release();     //释放一个车位
        return "ok";
    }

闭锁,等待所有任务完成释放锁

	/**
     * 放假、锁门
     * 1班没人了
     * 5个班,全部走完,我们才可以锁大门
     * 分布式闭锁
     */

    @GetMapping(value = "/lockDoor")
    @ResponseBody
    public String lockDoor() throws InterruptedException {

        RCountDownLatch door = redisson.getCountDownLatch("door");
        door.trySetCount(5);
        door.await();       //等待闭锁完成

        return "放假了...";
    }

    @GetMapping(value = "/gogogo/{id}")
    @ResponseBody
    public String gogogo(@PathVariable("id") Long id) {
        RCountDownLatch door = redisson.getCountDownLatch("door");
        door.countDown();       //计数-1

        return id + "班的人都走了...";
    }

解决缓存一致性问题

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


注解

在这里插入图片描述
参数和语法
在这里插入图片描述

在这里插入图片描述

依赖

		<!--Spring Cache,使用注解简化开发-->
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-cache</artifactId>
        </dependency>

使用
主启动类添加注解
在这里插入图片描述
配置类

package com.xxxx.gulimall.product.config;

import org.springframework.boot.autoconfigure.cache.CacheProperties;
import org.springframework.boot.context.properties.EnableConfigurationProperties;
import org.springframework.cache.annotation.EnableCaching;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.redis.cache.RedisCacheConfiguration;
import org.springframework.data.redis.serializer.GenericJackson2JsonRedisSerializer;
import org.springframework.data.redis.serializer.RedisSerializationContext;
import org.springframework.data.redis.serializer.StringRedisSerializer;



@EnableConfigurationProperties(CacheProperties.class)
@Configuration
@EnableCaching
public class MyCacheConfig {

    // @Autowired
    // public CacheProperties cacheProperties;

    /**
     * 配置文件的配置没有用上
     * @return
     */
    @Bean
    public RedisCacheConfiguration redisCacheConfiguration(CacheProperties cacheProperties) {

        RedisCacheConfiguration config = RedisCacheConfiguration.defaultCacheConfig();
        // config = config.entryTtl();
        config = config.serializeKeysWith(RedisSerializationContext.SerializationPair.fromSerializer(new StringRedisSerializer()));
        config = config.serializeValuesWith(RedisSerializationContext.SerializationPair.fromSerializer(new GenericJackson2JsonRedisSerializer()));

        CacheProperties.Redis redisProperties = cacheProperties.getRedis();
        //将配置文件中所有的配置都生效
        if (redisProperties.getTimeToLive() != null) {
            config = config.entryTtl(redisProperties.getTimeToLive());
        }
        if (redisProperties.getKeyPrefix() != null) {
            config = config.prefixKeysWith(redisProperties.getKeyPrefix());
        }
        if (!redisProperties.isCacheNullValues()) {
            config = config.disableCachingNullValues();
        }
        if (!redisProperties.isUseKeyPrefix()) {
            config = config.disableKeyPrefix();
        }

        return config;
    }

}

空值和key前缀的设置(解决缓存穿透)

#spring.cache.redis.key-prefix=CACHE_
spring.cache.redis.use-key-prefix=true

#?????????????
spring.cache.redis.cache-null-values=true

使用示例

   /**
     * 级联更新所有关联数据
     * @param category
     */
    @CacheEvict(value = "category",allEntries = true)       //删除某个分区下的所有数据
    @Transactional
    @Override
    public void updateCascade(CategoryEntity category) {
        this.updateById(category);
        categoryBrandRelationService.updateCategory(category.getCatId(),category.getName());
    }

    /**
     * 每一个需要缓存的数据我们都来指定要放到那个名字的缓存。【缓存的分区(按照业务类型分)】
     * 代表当前方法的结果需要缓存,如果缓存中有,方法都不用调用,如果缓存中没有,会调用方法。最后将方法的结果放入缓存
     * 默认行为
     *      如果缓存中有,方法不再调用
     *      key是默认生成的:缓存的名字::SimpleKey::[](自动生成key值)
     *      缓存的value值,默认使用jdk序列化机制,将序列化的数据存到redis中
     *      默认时间是 -1:
     *
     *   自定义操作:key的生成
     *      指定生成缓存的key:key属性指定,接收一个Spel
     *      指定缓存的数据的存活时间:配置文档中修改存活时间
     *      将数据保存为json格式
     *
     *
     * 4、Spring-Cache的不足之处:
     *  1)、读模式
     *      缓存穿透:查询一个null数据。解决方案:缓存空数据
     *      缓存击穿:大量并发进来同时查询一个正好过期的数据。解决方案:加锁 ? 默认是无加锁的;使用sync = true来解决击穿问题
     *      缓存雪崩:大量的key同时过期。解决:加随机时间。加上过期时间
     *  2)、写模式:(缓存与数据库一致)
     *      1)、读写加锁。
     *      2)、引入Canal,感知到MySQL的更新去更新Redis
     *      3)、读多写多,直接去数据库查询就行
     *
     *  总结:
     *      常规数据(读多写少,即时性,一致性要求不高的数据,完全可以使用Spring-Cache):写模式(只要缓存的数据有过期时间就足够了)
     *      特殊数据:特殊设计
     *
     *  原理:
     *      CacheManager(RedisCacheManager)->Cache(RedisCache)->Cache负责缓存的读写
     * @return
     */
    @Cacheable(value = {"category"},key = "#root.method.name",sync = true)
    @Override
    public List<CategoryEntity> getLevel1Categorys() {……}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值