多任务介绍
- 有很多的场景中的事情是同时进行的,比如开车的时候 手和脚共同来驾驶汽车,再比如唱歌跳舞也是同时进行的
- 试想,如果把唱歌和跳舞这2件事情分开依次完成的话,估计就没有那么好的效果了(想一下场景:先唱歌,然后在跳舞,O(∩_∩)O哈哈~)
多任务的概念
- 什么叫“多任务”呢?简单地说,就是操作系统可以同时运行多个任务。打个比方,你一边在用浏览器上网,一边在听MP3,一边在用Word赶作业,这就是多任务
- 现在,多核CPU已经非常普及了,但是,即使过去的单核CPU,也可以执行多任务。由于CPU执行代码都是顺序执行的,那么,单核CPU是怎么执行多任务的呢?
- 答案就是操作系统轮流让各个任务交替执行,任务1执行0.01秒,切换到任务2,任务2执行0.01秒,再切换到任务3,执行0.01秒……这样反复执行下去,也就是所谓的时间片轮转。表面上看,每个任务都是交替执行的,但是,由于CPU的执行速度实在是太快了,我们感觉就像所有任务都在同时执行一样。
- 真正的并行执行多任务只能在多核CPU上实现,但是,由于任务数量远远多于CPU的核心数量,所以,操作系统也会自动把很多任务轮流调度到每个核心上执行。
并行:真的多任务,任务数小于等于cpu核数,任务真的一起执行
并发:假的多任务,任务数大于cpu核数,通过操作系统的各种任务调度算法,实现多个任务“一起:执行
线程
# target指定将来 这个线程去哪个函数执行代码,这里放的是函数的引用,而不是函数的调用
# args指定将来调用 函数的时候 传递什么数据过去
# 当调用thread.Thread的时候,不会创建线程,只是创建一个线程的实例对象
t = threading.Thread(target=____, args=(____,...))
# 当调用thread创建出来的实例对象的start方法时,才会创建线程并开始执行
t2.start()
# 查看正在运行的线程
print(threading.enumerate())
# 创建tread时,执行的函数,运行结束意味着子线程结束
# 主线程结束,子线程也就结束了,线程的执行顺序不确定,可通过延时来指定顺序
- 通过使用threading模块能完成多任务的程序开发,为了让每个线程的封装性更完美,所以使用threading模块时,往往会定义一个新的子类class,只要继承threading.Thread就可以了,然后重写run方法,调用start方法会自动调用类里的run方法(必须有run方法,不然不能创建线程),在run方法中调用其他方法
import threading
import time
class MyThread(threading.Thread):
def run(self):
for i in range(3):
time.sleep(1)
msg = "I'm "+self.name+' @ '+str(i) #name属性中保存的是当前线程的名字
print(msg)
if __name__ == '__main__':
t = MyThread()
t.start()
- 多线程共享全局变量
- 在函数内部修改全局变量是否需要加global
- 若全局变量所指向的数据为不可变类型,就需要加global
- 若全局变量所指向的数据为可变类型,就不需要加global,利用方法就可以修改
import threading
import time
# 定义一个全局变量
g_num = 100
def test1():
global g_num
g_num += 1
print("-----in test1 g_num=%d----" % g_num)
def test2():
print("-----in test2 g_num=%d=----" % g_num)
def main():
t1 = threading.Thread(target=test1)
t2 = threading.Thread(target=test2)
t1.start()
time.sleep(1)
t2.start()
time.sleep(1)
print("-----in main Thread g_num = %d---" % g_num)
if __name__ == "__main__":
main()
import threading
import time
def test1(temp):
temp.append(33)
print("-----in test1 temp=%s----" % str(temp))
def test2(temp):
print("-----in test2 temp=%s----" % str(temp))
g_nums = [11, 22]
def main():
# target指定将来 这个线程去哪个函数执行代码
# args指定将来调用 函数的时候 传递什么数据过去
t1 = threading.Thread(target=test1, args=(g_nums,))
t2 = threading.Thread(target=test2, args=(g_nums,))
t1.start()
time.sleep(1)
t2.start()
time.sleep(1)
print("-----in main Thread g_nums = %s---" % str(g_nums))
if __name__ == "__main__":
main()
-
多线程共享全局变量问题
- 假设两个线程t1和t2都要对全局变量g_num(默认是0)进行加1运算,t1和t2都各对g_num加10次,g_num的最终的结果应该为20
- 但是由于是多线程同时操作,有可能出现下面情况:
- 在g_num=0时,t1取得g_num=0。此时系统把t1调度为”sleeping”状态,把t2转换为”running”状态,t2也获得g_num=0
- 然后t2对得到的值进行加1并赋给g_num,使得g_num=1
- 然后系统又把t2调度为”sleeping”,把t1转为”running”。线程t1又把它之前得到的0加1后赋值给g_num
- 这样导致虽然t1和t2都对g_num加1,但结果仍然是g_num=1
-
如果多个线程同时对同一个全局变量操作,会出现资源竞争问题,从而数据结果会不正确
import threading
import time
# 定义一个全局变量
g_num = 0
def test1(num):
global g_num
for i in range(num):
g_num += 1
print("-----in test1 g_num=%d----" % g_num)
def test2(num):
global g_num
for i in range(num):
g_num += 1
print("-----in test2 g_num=%d=----" % g_num)
def main():
t1 = threading.Thread(target=test1, args=(1000000,))
t2 = threading.Thread(target=test2, args=(1000000,))
t1.start()
t2.start()
# 等待上面的2个线程执行完毕....
time.sleep(0.5)
print("-----in main Thread g_num = %d---" % g_num)
if __name__ == "__main__":
main()
-
同步的概念
- 同步就是协同步调,按预定的先后次序进行运行。如:你说完,我再说。"同"字从字面上容易理解为一起动作其实不是,"同"字应是指协同、协助、互相配合
- 如进程、线程同步,可理解为进程或线程A和B一块配合,A执行到一定程度时要依靠B的某个结果,于是停下来,示意B运行,B执行,再将结果给A,A再继续操作
-
解决线程同时修改全局变量的方式
- 对于前面提出的那个计算错误的问题,可以通过线程同步来进行解决
- 思路,如下:
- 系统调用t1,然后获取到g_num的值为0,此时上一把锁,即不允许其他线程操作g_num
- t1对g_num的值进行+1
- t1解锁,此时g_num的值为1,其他的线程就可以使用g_num了,而且是g_num的值不是0而是1
- 同理其他线程在对g_num进行修改时,都要先上锁,处理完后再解锁,在上锁的整个过程中不允许其他线程访问,就保证了数据的正确性
-
互斥锁
- 当多个线程几乎同时修改某一个共享数据的时候,需要进行同步控制
- 线程同步能够保证多个线程安全访问竞争资源,最简单的同步机制是引入互斥锁
- 互斥锁为资源引入一个状态:锁定/非锁定
- 某个线程要更改共享数据时,先将其锁定,此时资源的状态为“锁定”,其他线程不能更改;直到该线程释放资源,将资源的状态变成“非锁定”,其他的线程才能再次锁定该资源。互斥锁保证了每次只有一个线程进行写入操作,从而保证了多线程情况下数据的正确性。
-
上锁解锁过程
- 当一个线程调用锁的acquire()方法获得锁时,锁就进入“locked”状态
- 每次只有一个线程可以获得锁。如果此时另一个线程试图获得这个锁,该线程就会变为“blocked”状态,称为“阻塞”,直到拥有锁的线程调用锁的release()方法释放锁之后,锁进入“unlocked”状态
- 线程调度程序从处于同步阻塞状态的线程中选择一个来获得锁,并使得该线程进入运行(running)状态
import threading
import time
# 定义一个全局变量
g_num = 0
def test1(num):
global g_num
# 上锁,如果之前没有被上锁,那么此时 上锁成功
# 如果上锁之前 已经被上锁了,那么此时会堵塞在这里,直到 这个锁被解开位置
mutex.acquire()
for i in range(num):
g_num += 1
# 解锁
mutex.release()
print("-----in test1 g_num=%d----" % g_num)
def test2(num):
global g_num
mutex.acquire()
for i in range(num):
g_num += 1
mutex.release()
print("-----in test2 g_num=%d=----" % g_num)
# 创建一个互斥锁,默认是没有上锁的
mutex = threading.Lock()
def main():
t1 = threading.Thread(target=test1, args=(1000000,))
t2 = threading.Thread(target=test2, args=(1000000,))
t1.start()
t2.start()
# 等待上面的2个线程执行完毕....
time.sleep(0.2)
print("-----in main Thread g_num = %d---" % g_num)
if __name__ == "__main__":
main()
-
锁的好处:
- 确保了某段关键代码只能由一个线程从头到尾完整地执行
-
锁的坏处:
- 阻止了多线程并发执行,包含锁的某段代码实际上只能以单线程模式执行,效率就大大地下降了
- 由于可以存在多个锁,不同的线程持有不同的锁,并试图获取对方持有的锁时,可能会造成死锁
-
死锁
- 在线程间共享多个资源的时候,如果两个线程分别占有一部分资源并且同时等待对方的资源,就会造成死锁,尽管死锁很少发生,但一旦发生就会造成应用的停止响应
import threading
import time
class MyThread1(threading.Thread):
def run(self):
# 对mutexA上锁
mutexA.acquire()
# mutexA上锁后,延时1秒,等待另外那个线程 把mutexB上锁
print(self.name+'----do1---up----')
time.sleep(1)
# 此时会堵塞,因为这个mutexB已经被另外的线程抢先上锁了
mutexB.acquire()
print(self.name+'----do1---down----')
mutexB.release()
# 对mutexA解锁
mutexA.release()
class MyThread2(threading.Thread):
def run(self):
# 对mutexB上锁
mutexB.acquire()
# mutexB上锁后,延时1秒,等待另外那个线程 把mutexA上锁
print(self.name+'----do2---up----')
time.sleep(1)
# 此时会堵塞,因为这个mutexA已经被另外的线程抢先上锁了
mutexA.acquire()
print(self.name+'----do2---down----')
mutexA.release()
# 对mutexB解锁
mutexB.release()
mutexA = threading.Lock()
mutexB = threading.Lock()
if __name__ == '__main__':
t1 = MyThread1()
t2 = MyThread2()
t1.start()
t2.start()
- 避免死锁
- 程序设计时要尽量避免(银行家算法)
- 添加超时时间等