-
干货 | 携程实体链接技术的探索及实践
-
干货 | 百亿节点,毫秒级延迟,携程金融基于 nebula 的大规模图应用实践
-
Flink 引擎在快手的深度优化与生产实践
-
无量深度学习系统在腾讯推荐类业务的应用
-
阿里前端智能化技术探索和未来思考
-
开源重器!九章云极 DataCanvas 公司 YLearn 因果学习开源项目即将发布!
-
使用深度学习进行图像分类
-
九章云极 DataCanvas 公司获评 36 氪「最受投资人关注的硬核科技企业」
-
九章云极 DataCanvas 公司摘获「第五届数字金融创新大赛」最高荣誉!
-
PyTorch 构建深度学习算法的方式
-
宛言:爆款素材识别在快手的应用与实践
-
美团大众点评搜索相关性技术探索与实践
-
美团外卖广告大规模深度学习模型工程实践
-
PyTorch 已为我们实现了大多数常用的非线性激活函数
-
刘石伟:字节跳动埋点数据流建设与治理实践
-
B 站离线多机房架构实践
-
网易云音乐机器学习平台实践
-
九章云极 DataCanvas 公司蝉联中国机器学习平台市场 TOP 3
-
[资讯] 基于 QUIC 协议的 HTTP/3 正式发布!
-
京东 618 广告精排百分位 AUC 提升技术方案
-
方阳:贝壳找房推理服务 MLOPS 实践
-
图谱实战 | 58 同城周超:基于招聘场景下的知识图谱构建及应用
-
网易云音乐 FeatureStore 建设与实践
-
周强:蚂蚁集团流式图计算引擎 GeaFlow 的技术架构与应用实践
-
AI 落地的新范式,就“藏”在下一场软件基础设施的重大升级里
-
曹东:携程日志系统索引构建之路
-
美团综合业务推荐系统的质量模型及实践
-
汽车之家推荐系统架构迭代之路
-
阿里可观测性数据引擎的技术实践
-
vivo 技术|Elasticsearch 在地理信息空间索引的探索和演进
-
达观数据 | 王文广:FMEA 知识图谱的构建与应用实践
-
阿里技术 | 深度解读 RocketMQ 存储机制
-
Elasticseach:从微服务架构演变到大宽表思维的架构转变
-
李向林:OPPO 自研大规模知识图谱及其在小布助手中的应用
-
杨韬:微信搜一搜中的智能问答技术
-
腾讯信息流亿级相似视频识别技术架构优化实践
-
KDD2022 | MUVCOG:阿里妈妈多模态搜索会话下的用户意图刻画
-
去哪儿旅行混沌工程落地实践
-
百度评论中台的设计与探索
-
58 技术 | AI 面试机器人后端架构实践
-
图深度学习模型进展和在阿里搜索广告中的应用创新
-
于晓路:贯穿事前事中事后,图计算在信贷反欺诈的探索和实践
-
算法如何高效表达图计算?亚马逊云科技 DGL 图学习平台介绍
-
钱大妈基于 Flink 的实时风控实践
-
网易云音乐模型预估系统建设与实践
-
数据智能基础设施升级窗口将至?看九章云极 DingoDB 如何击破数据痛点
-
王希廷博士:从知识图谱和自然语言生成的角度认识可解释推荐
-
vivo 推荐中台升级路:机器成本节约 75%,迭代周期低至分钟级
-
五分钟搞定 Flink 双流 JOIN 面试题
-
VRHCIAI 2022 虚拟现实、人机交互与人工智能国际会议
-
卞东海:百度基于异构互联知识图谱的多模内容创作技术
-
近线召回 TFMS 在阿里妈妈广告平台的实践
-
字节跳动|智能问答:基于 BERT 的语义模型
-
李阳:京东零售 OLAP 平台建设和场景实践
-
阿里 | 新时期的阿里妈妈广告引擎架构
-
阿里妈妈展示广告智能拍卖机制的演进之路
-
张鸿志:美团大脑百亿级知识图谱的构建及应用进展
-
罗强:腾讯新闻如何处理海量商业化数据?
-
块存储质量的铸就之路 — 测试左移在大型分布式系统中的工程实践
-
中国电力科学研究院 | 电力领域知识图谱技术进展与应用
-
李呈祥:bilibili 在湖仓一体查询加速上的实践与探索
-
快手牛亚男:基于多 Domain 多任务学习框架和 Transformer,搭建快手精排模型
-
邱盛昌:OPPO 商业化数据体系建设实战
-
阿里|如何写出一篇好的技术方案?
-
Flink ML API,为实时机器学习设计的算法接口与迭代引擎
-
张政:京东在智能广告的实践和探索——集成 AI 理解、AI 生成、AI 分发的内容生态
-
九章云极 DataCanvas 公司荣获“鑫智奖·第四届金融数据智能优秀解决方案”
-
蓝海深处的 AI 和数据科学平台
-
阿里本地生活搜索智能化升级实践:如何更有效适配本地业务?
-
华为史佳欣:基于知识图谱的复杂问题推理问答
-
实时数据湖在字节跳动的实践
-
网易云音乐|服务启动过程性能波动的分析与解决方案
-
阿里 10 年沉淀|那些技术实战中的架构设计方法
-
阿里|关于技术能力的思考和总结
-
网易数帆数据中台逻辑数据湖的实践
-
阿里技术|阿里 TPP 图化框架技术实践—打造算法在线服务领域极致开发体验与性能
-
阿里技术|多模态技术在淘宝主搜召回场景的探索
-
极验 | 对抗样本技术在互联网安全领域的应用
-
淘系技术|无尽流场景优化总结
-
淘系技术|生成式重排在内容推荐中的应用实践
-
淘系技术 | Gradient Normalization 在多任务学习中的优化实践
-
淘系技术|GNN 在轻应用内容推荐中的召回实践
-
淘系技术 - 冷启动系统优化与内容潜力预估实践
-
淘系技术 | 内容推荐场景中自监督学习的应用
-
华为朱杰明:预训练模型在信息流推荐中的应用与探索
-
粗排第一篇 - 你的业务需要粗排吗
-
陈振兴:京东图机器学习在智能反欺诈上的探索与实践
-
罗清:对比学习在快手推荐排序的应用
-
【干货篇】字节跳动:文本归一化与中文纠错
-
李晓亮:腾讯搜索词推荐算法探索实践
-
周力博士:小冰 AI+AI 对谈技术的探索与应用
-
美团大脑中的商品理解与样本治理
-
网易严选时序预测算法实践
-
去哪儿网|国内酒店交易 DDD 应用与实践——代码篇
-
去哪儿网|国内酒店交易 DDD 应用与实践——理论篇
-
实时增量学习在云音乐直播推荐系统中的工程实践
-
实时增量学习在网易云音乐直播推荐系统中的实践
-
Disruptor 在网易云音乐特征服务中的应用
-
自动化知识图谱表示学习:从三元组到子图
-
百度技术 | Spark 离线开发框架设计与实现
-
如何提升推荐系统的可解释性?京东智能推荐卖点技术全解析!
-
AI 开放平台的作用是什么?
-
AI 开放平台 - 科大讯飞
-
ai 开放平台
-
全球首个 AI 模型开发管理标准正式发布,九章云极 DataCanvas 公司助力 AI 工程化新发展
-
美团 | 标准化思想及组装式架构在后端 BFF 中的实践
-
阿里超大规模 Flink 集群运维体系介绍
-
Apache Flink 在蔚来汽车的应用
-
虎牙 | 刘柏芳:弹性分布式训练在虎牙的实践
-
精华 | 如何开一场高效的迭代排期会
-
百度|云原生时代的搜索服务算力管理
-
第四范式 | OpenMLDB:线上线下一致的生产级特征计算平台
-
马玉潮:物流平台的车货匹配推荐算法及标签体系搭建
-
网易严选 | 流量分发决策:既要又要的平衡之路
-
VRHCIAI 2022
-
Qunar 技术 | 从活动能力层建设看业务架构
-
Flink 流批一体在小米的实践
-
「技术人生」第 6 篇:技术同学应该如何理解业务?
-
「技术人生」第 7 篇:从业务视角谈信息技术与业务的关系
-
腾讯技术 | 后台自动化测试与持续部署实践
-
陈剑:虎牙实时计算平台服务的 SLA 之路
-
一线技术人的成长思考总结
-
详细解读!推荐算法架构——召回
-
【公告】开放 AIQ 人工智能交流 2 群
-
Flink 在众安保险金融业务的应用
-
阿里大淘系模型治理阶段性分享
-
腾讯技术 | 超强指南!推荐算法架构——重排
-
赵宏田:用户画像场景与技术实现
-
Flink 整合 ElasticSearch 详细指南及踩坑记录
-
李翔:美团到店综合知识图谱的构建与应用
-
QQ 音乐推荐召回算法的探索与实践
-
猎户座 - 持续打造爱奇艺在用户画像之上的策略引擎!
-
vivo 短视频推荐去重服务的设计实践
-
网易严选数据湖建设实践
-
Qunar 技术 | 基于 DDD 思想的技术架构战略调整
-
京东|杨尚昂:FlinkSQL 在京东实时维度建模中的应用
-
位置偏差在马蜂窝推荐排序中的实践
-
汽车之家推荐系统 AB 实验平台
-
郭人通:向量数据库及 Embedding 流水线
-
58 同城 | 周彤:房价预估,房产价格体系中的算法实践
-
百度|客户画像赋能百度推广生态实践
-
淘系技术|基于特征全埋点的精排 ODL 实践总结
-
网易新闻推荐工程优化 - 特征算子篇
-
崔世起:小米小爱同学无效 Query 识别
-
“未知的未知”风险能够防范么?
-
QQ 音乐推荐系统算法架构实践
-
贝壳找房智能投放技术实践
-
阿里技术 | 如何从容应对软件复杂性
-
腾讯技术 | 深入解读腾讯云微搭低代码的技术架构!
-
网易新闻推荐工程优化 - 特征平台篇
-
Google 技术 | 蓝昶:谷歌分布式机器学习优化实践
-
Apache Flink 在斗鱼的应用与实践
-
图文解读:推荐算法架构——精排!
-
蒋能学:网易云音乐广告算法实践
-
王冬月:京东推荐算法精排技术实践
-
微信全文搜索技术优化实践
-
一个好的持续交付流水线是怎样的?
-
阿里技术 | 高可用的本质
-
傅轶:网易数帆云原生日志平台架构实践
-
初窥门径,百度搜索流式体验新形态
-
汽车之家基于 Flink 的实时计算平台 3.0 建设实践
-
异构广告混排在美团到店业务的探索与实践
-
张菡:深度学习下的京东搜索召回技术
-
去哪儿网 | 机票报价高并发实施的关键路径
-
王桐:阿里智慧供应链预测算法
-
腾讯音乐 | QQ 音乐命名实体识别技术
-
GPU 在美团外卖场景精排模型预估中的应用实践
-
美团外卖广告平台化的探索与实践
-
王志勇:贝壳找房 CVR 转化率预估模型实践
-
如何设计一个复杂的业务系统 (DDD 实践)?
-
百度爱番番 | 大规模异构数据的线索列表进化之路
-
李茶:虎牙直播推荐系统架构详解
-
美团搜索中查询改写技术的探索与实践
-
端智能在大众点评搜索重排序的应用实践
-
美团 Flink 大作业部署与状态稳定性优化实践
-
赵鑫:强化学习在京东广告序列推荐中的应用
-
58 技术 | 深度学习排序在 58 招聘搜索场景的演进
-
【通知!!】2022 AIQ 全面开放注册
-
OPPO 唐黎:零代码技能平台技术实践探索!
-
丁香园 | 电商搜索的语义理解问题
-
OPPO | 小布助手闲聊生成式算法
-
辛涛:字节跳动机器学习系统云原生落地实践
-
熊飞:“猜你去哪” 飞猪用户旅行意图预测
-
Redis 在 vivo 推送平台的应用与优化实践
-
渠江涛:重排序在快手短视频推荐系统中的演进
-
QQ 音乐排序模型优化
-
黄正杰:百度图学习技术与应用
-
梁宁:增长思维 30 讲脑图笔记
-
苏永浩:Embedding 技术在商业搜索与推荐场景的实践
-
李宗纯:图机器学习在度小满风控中的应用
-
腾讯音乐知识图谱搜索实践
-
58 同城 | 刘德华:标签推荐与“猜你想找”算法实践
-
字节跳动 | 无人测试流水线建设之业务实践
-
闲鱼搜索召回升级:向量召回 & 个性化召回
-
赵海源:峰值超 2 亿 / 秒,Kafka 在美团数据平台的实践
-
工商银行实时大数据平台建设历程及展望
-
杨宇鸿:腾讯多模态内容理解技术及应用
-
陈胜:美团搜索排序实践
-
九章云极 DataCanvas 公司荣获机器之心三大奖项,助力产业数智化升级
-
九章云极 DataCanvas 公司荣登 2021 年度高科技高成长企业系列榜单
-
袁腾飞:阿里飞猪信息流内容推荐探索
-
周玉驰:因果分析在贝壳的探索实践
-
有赞算法平台之模型部署演进
-
刘桐仁:百度搜索中台内容架构 Serverless 化实践
-
腾讯音乐多模态音乐匹配技术与应用
-
阿⾥搜索中台在 DevOps&AIOps 的思考及实践
-
阿里一面:如何保障消息 100% 投递成功、消息幂等性?
-
vivo 推送平台架构演进
-
从阿里核心场景看实时数仓的发展趋势
-
汤楚熙:美团实时数仓架构演进与建设实践
-
百度搜索中台新一代内容架构:FaaS 化和智能化实战
-
来也技术 | 向量检索使用场景和关键技术
-
陈兴振:58 同城机器学习平台资源使用率优化实践
-
万阳春:度小满金融 OCR 技术在小微场景中的应用
-
携程 | 上百个业务场景,语义匹配技术在携程智能客服中的应用
-
OPPO 数智技术 | 大数据 SQL 优化之数据倾斜解决案例全集
-
京东商品知识图谱构建与实体对齐实践
-
阿里妈妈搜索广告预估模型 2021 思考与实践
-
阿里技术 | 主流推荐与垂类推荐技术的发展与延伸
-
深入搜索引擎之 Elasticsearch 必知必会(一):开发视角
-
贝壳业务数据治理中台实践
-
峰值 6 亿 / 秒,Flink 在京东的应用与优化实践
-
阿里妈妈定向广告智能投放技术体系
-
九章云极 DataCanvas 公司深度参编《中国金融科技发展报告 2021》蓝皮书
-
何会会:有赞数据地图实践
-
徐美兰:深度应用驱动的医学知识图谱构建
-
沈冰阳:强化学习在推荐冷启动优化中的实践探索!
-
达摩院李雅亮:大规模预训练模型的压缩和蒸馏
-
Project Matrix:京东 Spark ML 线性模型的重构与优化实践
-
OPPO 小布助手算法系统探索、实践与思考
-
实时性提升 4000 倍?图数据库在腾讯业务中的应用实践!
-
技术揭秘!百度搜索中台低代码的探索与实践
-
腾讯技术 | 微信图片翻译技术优化之路
-
Enrich Processor——Elasticsearch 跨索引关联数据新方式
-
今日头条搜索品质优化 - 端到端篇
-
淘系技术 | 多序列融合召回在新用户冷启动上的应用
-
淘系技术 | 内容推荐场景下多模态语义召回的若干实践
-
CMDM:基于异构序列融合的多兴趣深度召回模型在内容平台的探索和实践
-
淘系技术 | 2021 召回技术在内容推荐的实践总结
-
网易云音乐广告 CTR 预估模型演进过程
-
干货 | Elasticsearch 向量搜索的工程化实战
-
九章云极 DataCanvas 公司实力荣登「WISE 2021 新经济之王」年度硬核企业榜
-
【下载】AIQ 人工智能技术学习资料年度整理大合集电子书 PDF
-
贝壳找房 | Flink 运维体系在贝壳的实践
-
伴鱼基于 Flink 构建数据集成平台的设计与实现
-
百度搜索中台海量数据管理的云原生和智能化实践
-
九章云极 DataCanvas 荣获“2021 真榜•中国最具价值创新企业榜单”
-
网易严选实时计算平台建设实践
-
TDM 到二向箔:阿里妈妈展示广告 Match 底层技术架构演进
-
淘系技术 | 端智能技术体系概述
-
普渡大学李攀:好的图表示到底是什么?
-
58 技术 | 推荐算法在商业化场景中的探索实践
-
TensorFlow 在推荐系统中的分布式训练优化实践
-
《ModelOps 技术应用及趋势白皮书》正式发布
-
九章云极 DataCanvas 发布 2021 AutoML 自动机器学习白皮书
-
腾讯技术 | Al 与推荐技术在腾讯 QQ 浏览器的应用
-
华为云苏嘉:如何整合预训练模型和知识图谱做医疗推理?
-
美团 | 预训练技术在美团到店搜索广告中的应用
-
百度搜索 | 详解预训练模型在信息检索第一阶段的应用
-
vivo 敏感词匹配系统的设计与实践
-
KDD’21 | 揭秘 Facebook 升级版语义搜索技术 Que2Search
-
Facebook 全新电商搜索系统 Que2Search
-
阿里技术 | 双 11 实时物流订单最佳实践
-
去哪儿网 BI 平台建设演进与实践
-
推荐系统系列 01: 详解曝光去重设计与实践
-
Uber 大规模广告处理实践: Apache Flink、Kafka 和 Pinot 进行实时广告事件处理!
-
图像检索在高德地图 POI 数据生产中的应用
-
腾讯 | 互联网知识图谱的构建及应用
-
QQ 音乐推荐系统的精细化调控
-
爱奇艺智能内容中台|无人值守的应用与实践
-
58 本地服务少无结果场景下的推荐算法实践
-
微信 ClickHouse 实时数仓的最佳实践
-
百度商业大规模高性能全息日志检索技术揭秘
-
王元:新一代人工智能算法平台设计和背后的逻辑
-
搜索系统,推荐系统,广告系统架构及人工智能算法技术资料最全整理
-
58 技术 | 招聘商业智能搜索召回体系搭建
-
排得更好 VS 估得更准 VS 搜的更全「推荐、广告、搜索」算法间到底有什么区别?
-
美团搜索多业务商品排序探索与实践
-
百度技术 | 短视频个性化 Push 工程精进之路
-
陈小天:时间序列模型在金融领域应用实践
-
NLP 高频面试题:参数更新、bert 训练、扩充样本、layer&batch 等
-
58 技术 | 韩伟:黄页商家智能聊天助手用户体验深度优化
-
阿里飞猪林睿:从核心因子预估 > 实体识别,如何实现文本和空间的搜索相关性?
-
2021 年 11 月初,VIVO & 地平线视觉工程师面经
-
通用排序框架在爱奇艺推荐的应用
-
AI 应用时代:用 ModelOps 打造模型的全生命周期管理
-
2021 年 9 月中旬,百度 NLP 岗位面试题分享(二)
-
2021 年 9 月中旬,百度 NLP 岗位面试题分享(一)
-
1.1 机器学习概述——机器学习的发展
-
2021 年 9 月底 – 字节跳动 NLP 岗位(抖音)面试题分享
-
美团知识图谱问答技术实践与探索
-
2021 年 9 月底,百度 NLP 岗位精选面试题
-
贝壳技术 | 响应式编程和协程在 Java 语言的应用
-
腾讯金融研究院 | 寻找最优数字规则框架
-
百分点大数据技术团队:基于多 Spark 任务的 ClickHouse 数据同步方案实践
-
美团基于知识图谱的剧本杀标准化建设与应用
-
5 年迭代 5 次,抖音基于 Flink 的实时推荐系统演进历程
-
OPPO 大数据离线计算平台架构演进
-
AI 在度小满征信解读中的应用
-
兴趣搜索在腾讯看点的探索与实践
-
新东方在线教育实时数仓的落地实践
-
高德打车稳定性建设
-
情感分析技术在美团的探索与应用
-
借助 Flink 与 Pulsar,BIGO 打造实时消息处理系统
-
阿里飞猪推荐算法探索实践
-
从零开始掌握 tensorflow 算子开发 (1):tensorflow 架构以及编译构建
-
图对比学习的最新进展
-
网易 | Hive SQL 迁移 Spark SQL 在网易传媒的实践
-
推荐系统全链路(4):打压保送重排策略 - 拍不完的脑袋
-
推荐系统全链路(3)召回粗排精排 - 级联漏斗下篇
-
推荐系统全链路(2)召回粗排精排 - 级联漏斗上篇
-
推荐系统全链路(1):召回粗排精排 - 各有所长
-
腾讯 CTR 建模过程中的实践总结
-
KDD’21 | 淘宝搜索中语义向量检索技术
-
百度 NLP 技术在智能招聘中的应用研究
-
深入互联网广告中的出价模式 — 再谈 oCPX 中的双出价
-
淘系技术 | 分钟级在线深度学习在手淘信息流排序模型中的探索与实践
-
开奖了 | 揭秘 2022 届美团和腾讯校招薪资,香水团完全不输鹅厂!
-
百度|图谱相关技术在风控反作弊中的应用和探索
-
腾讯 | 智能批改技术实践与探索
-
推荐系统中粗排扮演的角色和算法发展历程
-
阿里 | 流计算引擎数据一致性的本质
-
推荐广告模型的降本提效:压缩策略
-
网易云音乐实时数仓 2.0 进阶之路
-
广告分析:常用的广告效果评估指标大全(广告主 + 媒体)
-
线上广告:用户营销触达的重要渠道与手段(移动端)
-
美团 | 广告深度预估技术在美团到店场景下的突破与畅想
-
蜻蜓 FM 实时推荐系统的发展和演进
-
实体链接在小布助手和 OGraph 的实践应用
-
2021 年网易云音乐实时计算平台发展和挑战
-
百度信息流推荐系统智能交付解决方案探索
-
想了解百度搜索核心技术?来这!
-
从零开始掌握 tensorflow 算子开发
-
机器学习 - 特征工程分享 PPT(可下载)
-
萨摩耶云 | 深度迁移学习技术在金融风控中的应用
-
灵数科技 | 图在异常流量识别中的应用和演进
-
来也 | 自监督学习在计算机视觉中的应用
-
阿里小蜜多模态知识图谱的构建及应用
-
贝壳找房 | 人机耦合在贝壳新居住服务的应用
-
58 技术 | 广义多目标算法探索实践
-
从技术到体验:vivo 机器翻译落地实践
-
Bilibili 基于 Flink 的优化与实践
-
Impala 在腾讯金融大数据场景中的应用
-
百度数据联邦平台及其应用研究
-
CV 精选知识点:什么是 NMS(Non-maximum suppression 非极大值抑制)
-
字节跳动是怎么做全链路压测的?
-
百度信息流和搜索业务中的 KV 存储实践
-
神策数据 | 从技术视角看什么才是值得拥有的 A/B 测试?
-
Apache Flink 在汽车之家的应用与实践
-
2021 年 8 月,字节秋招算法 5 道面试题分享
-
爱奇艺 TensorFlow Serving 内存泄漏优化实践
-
腾讯技术 | QQ 浏览器智能问答技术探索实践
-
度小满金融大数据架构实践
-
CV 精选知识点:DPM(Deformable Parts Model)算法流程详解
-
金融场景下的模型可解释性应用探索
-
无监督算法在虎牙风控的探索实践
-
2021 年 8 月,Shopee- 算法工程师 5 道面试题分享
-
知识图谱在第四范式金融场景的应用及研究
-
百度技术 | 云原生架构下的持续交付实践
-
字节技术 | 火山引擎 A/B 测试的思考与实践
-
百分点认知智能实验室:智能校对的技术原理和实践
-
阿里巴巴 CTO 鲁肃独家自述:CTO 就是要给 CEO 扫清障碍和风险
-
干货 | 携程 AI 推理性能的自动化优化实践
-
百度 | 持续交付方法与实践
-
美团 | 新一代 CTR 预测服务的 GPU 优化实践
-
2021 年 7 月底,“陌陌”推荐算法 5 道面试题分享!
-
面试题精选 | 风控建模流程、分箱法的目的及第三方数据评估!
-
金融风控大厂 10 道精选面试题分享!
-
腾讯基于预训练模型的文本内容理解实践
-
2021 年七月中旬,百度算法面试 5 道题分享
-
融 360 金融风控系统开发实践
-
百度短视频推荐系统的目标设计
-
百度 | 一年数十万次 ABTest 实验背后的架构与数据科学
-
金融风控精选 5 道面试题分享 ! 文末彩蛋
-
由于幸存者偏差,导致强变量在后续迭代中逐渐削弱甚至相反怎么办 | 文末有福利
-
2021.09.05 AIQ-ChangeLogs
-
2021 年七月中旬,虾皮北京提前批 - 算法工程师 5 道面试题
-
闲鱼是如何做个性化商品选品及人群画像分析的
-
腾讯基于兴趣点图谱的内容理解
-
美团智能客服技术实践
-
AI 开源项目精选:GPT2.0、激活可视化、全面基本面分析包
-
去哪儿网库存搜索在高并发场景下的探索
-
伴鱼:借助 Flink 完成机器学习特征系统的升级
-
AI 精选开源项目:处理 fMRI 数据、检测卫星图像、GPT2 生成模型
-
张俊林:对比学习在微博内容表示的应用
-
汽车之家离线计算平台建设实践
-
Apache Flink 在京东的实践与优化
-
2021 年 7 月中旬,腾讯 PGB,NLP 算法面试题 6 道!
-
快手基于 Flink 构建实时数仓场景化实践
-
伴鱼用户画像平台:设计篇
-
伴鱼技术 | 机器学习预测服务:设计篇
-
Uber 机器学习平台实践
-
伴鱼技术 | 机器学习特征系统在伴鱼的演进
-
百度技术 | 图数据库在百度汉语中的应用
-
AI 开源项目分享:pytorch 增强图像数据、Tensorflow 2.0 实现…
-
如何支持亿级用户分流实验?AB 实验平台在爱奇艺的实践
-
AI 精选开源项目:构建向量应用程序、YOLO 存储库、多语言语料库
-
2021 年 7 月中旬 蔚来 NLP 算法工程师 面试题 4 道!
-
阿里技术 | 如何设计可靠的灰度方案
-
万物皆为向量:爱奇艺在线向量召回工程服务化实践
-
AI 开源项目分享:动作识别框架 Sense、多目标跟踪神器…
-
AI 开源项目分享:时间序列预测模型、图像监督的 python 库…
-
归因分析:淘宝直播数据助理及其价值研究
-
AI 开源项目精选 | 基于 pytroch 的 ORC 算法库及 python 高性能 CPU 分析等
-
NER 技术在对话系统中的应用实践
-
OPPO 数据湖统一存储技术实践
-
斗鱼风控算法体系建设
-
百度技术 | 千亿级模型在离线一致性保障方案详解
-
21 年 7 月底,字节推荐算法(DATA-EDU)面试题 5 道
-
去哪儿网数据同步平台技术演进与实践
-
基于 PaddlePaddle 的出色多语言 OCR 工具包、钢琴 MIDI 数据集
-
2021 年 7 月初,深圳 TPlink 图像算法工程师面试题分享
-
淘系技术 | 淘宝视频的跨模态检索
-
阿里妈妈展示广告预估校准技术演进之路
-
网易有数机器学习平台批调度与 k8s 调度系统的深度解析
-
58 技术|改进的 Wide&Deep 在文本分类中的应用
-
闲鱼技术 | 如何实现卖家增长任务的 AB 实验
-
数据库、数据仓库、大数据平台、数据中台、数据湖对比分析
-
腾讯技术 | 揭秘 Feed 信息流推荐背后的系统设计
-
大厂面试题分享:K 近邻、kmeans 聚类算法、随机森林、SVM 算法
-
滴滴数据挖掘工程师招聘
-
滴滴测试开发工程师招聘
-
滴滴招聘 HR 实习生
-
Flink 在爱奇艺广告业务的实践
-
阿里技术 | 基于实时深度学习的推荐系统架构设计和技术演进
-
多类目 MoE 模型在京东电商搜索中的应用
-
58 技术 | 文本表征模型在风控场景下的应用实践
-
机器学习建模中的 Bagging 思想
-
爱奇艺搜索排序算法实践
-
2022 届 360 校招提前批推荐算法面试题总结
-
面经分享:零基础从数据分析成功转行推荐算法成功上岸
-
腾讯技术 | 自动化接口测试实践经验
-
微拍堂 | 深度召回在文玩个性化推荐中的实践
-
2021 年 6 月底,明略科技算法岗 7 道面试题分享
-
AI 开源项目分享:PyTorch 的语义分割及最快的非结构化数据集等
-
美团商品知识图谱的构建及应用
-
爱奇艺娱乐行业完备的知识图谱库落地实践
-
特征存储及计算在 CRM 商机智能分配中的实践
-
「技术人生」第 5 篇:浅谈如何成为技术一号位?
-
「技术人生」第 4 篇:技术、业务、组织的一般规律及应对策略
-
「技术人生」第 3 篇:解决问题的规律总结
-
「技术人生」第 2 篇:学会分析事物的本质
-
「技术人生」专题第 1 篇:什么是技术一号位?
-
2021 年 6 月底,拼多多搜索广告算法暑假实习面试题 2 道
-
「干货」YOLOv5 的 PyTorch 实现、多视图 3D 人体数据集等 AI 开源项目
-
yolov4 火灾检测,烟雾检测、 古文预训练语言模型等 AI 开源项目分享
-
vivo 2022 届提前批数据挖掘 面试题 | 文末免费送书
-
复杂语境下的实体关系抽取
-
58 技术 | 王焱:58 同城流式语音识别引擎应用实践
-
腾讯 | 布隆过滤器原理与应用
-
丰富 TF Serving 生态,爱奇艺开源灵活高性能的推理系统 XGBoost Serving
-
去哪儿网 | Lucene 倒排索引原理
-
本周 AI 开源项目分享!多对象跟踪、电影推荐系统、神经网络…
-
2021 年 6 月 9 日,CVTE NLP 算法岗面试题 5 道
-
2021 年 6 月,CVTE NLP 算法岗 4 道面试题分享
-
网易云音乐大 Flow 任务优化实践
-
分享 7 个 AI 优质开源项目!文本生成、自动化数据搜集…
-
浅谈有赞搜索质量保障体系
-
2021 年 4 月份 3 道伴鱼 AI 算法岗面试题
-
58 同城 CRM 多目标排序算法
-
阿里技术 | Serverless 时代下大规模微服务应用运维的最佳实践
-
eBay | 图神经网络在支付风控中的应用
-
美团本地生活综合性需求知识图谱的构建及应用
-
2021 年 4 月份,阿里蚂蚁金服算法岗实习面试题 6 道
-
【阿里妈妈数据科学系列】第二篇:在线分流框架下的 ABTest
-
vivo | 深度解析 Lucene 轻量级全文索引实现原理
-
闲鱼大规模实时数仓搭建实践
-
闲鱼商品理解数据分析平台——龙宫
-
闲鱼搜索相关性——体验与效率平衡的背后
-
2021 年 4 月份,京东算法岗面试题 4 道
-
WAIC| 高精准、低成本,九章云极 DataCanvas 突破 AutoML 难题
-
【阿里妈妈数据科学系列】第一篇:认识在线实验 (ABTest)
-
汽车之家湖仓一体架构实践
-
贝壳找房 | 端到端模型在贝壳经纪人流失预警场景的实践
-
2021 年 6 月 6 日 -6 月 16 日,拼多多算法面试 8 道
-
爱奇艺多语言台词机器翻译技术实践
-
干货 | 如何将知识图谱引入推荐系统?
-
Flink + Iceberg + 对象存储,构建数据湖方案
-
多业务建模在美团搜索排序中的实践
-
PPT+ 视频回放 | 来也科技《知识图谱及智能问答系统构建》
-
2021 年 6 月份,TPLINK22 提前批网络安全算法工程师面试题 3 道
-
NLP 从业者拿到 BAT50 万 offer 的提升历程:分享近 100 道 NLP 面试题
-
融 360 | 智能风控模型的自动化迭代
-
58 同城本地服务《虚拟类目 - 标签》体系构建
-
百度搜索稳定性问题分析的故事(下)
-
2021 年 4 月底,腾讯应用研究岗暑期实习面试题 12 道
-
2021 年 6 月份:vivo 推荐算法工程师一面 · 5 道题 | 福利
-
网易云音乐数仓治理之数据任务重构实践
-
多标签分类中的损失函数与评估指标
-
万字解读:预训练模型最新综述
-
推荐系统中的长尾物品(Tail Items)推荐问题方案
-
小米在知识表示学习的探索与实践
-
同程旅行网基于 RocketMQ 高可用架构实践
-
58 同城 HBase 平台 ZGC 应用实践
-
百度搜索稳定性问题分析的故事(上)
-
邀请函 |7 月 10 日,九章云极 DataCanvas 邀您相约世界人工智能大会
-
TP-LINK 提前批(图像算法岗)6 月 7 日 -6 月 8 日 面试题 6 道
-
多目标排序在爱奇艺短视频推荐中的应用
-
eBay | 亿展宏图 第二篇 | 图算法在 eBay 支付风控领域的应用
-
算法在哈啰顺风车中的实践应用
-
算法工程师:肩上扛是脑子,不是皮球(NLP 最新面试 35 题)
-
自然语言处理 (NLP) 精选 13 道面试题
-
好未来暑期算法实习面试题 5 道
-
Qunar | Flink+ 数据湖 Iceberg 的体验
-
唯品会:在 Flink 容器化与平台化上的建设实践
-
丁香园基于 Milvus 的向量召回应用
-
阿里 | 全链路压测体系建设方案的思考与实践
-
深度学习大厂面试题汇总(31 - 40)
-
深度学习精选面试题:涵盖深度学习所有考点(15-30)
-
金融资管领域知识图谱的构建和应用
-
标签数据——用户 LBS 位置标签及 POI 数据如何从生产到应用?
-
eBay | 亿展宏图 第一篇— 两张图入门图算法
-
飞猪 | 拼接召回在飞猪交通域的实践
-
阿里妈妈应用系统大规模异步交互治理方案
-
阿里云 | 深入理解领域驱动设计中的聚合
-
5 月 24 日 -5 月 27 日,好未来算法实习岗面试题 8 道
-
性能优化:关于缓存的一些思考
-
深度学习面试 79 题:涵盖深度学习所有考点(66-79)
-
OPPO | 统一预估引擎的设计与实现
-
数据指标是什么?必知必会的数据指标类型都在这了
-
基于 Flink 打造的伴鱼实时计算平台 Palink 的设计与实现
-
【干货篇】平安银行推荐系统介绍(专题)
-
58 同城 | 智能问答机器人问答引擎架构实践
-
基于 Lucene 实现万亿级多维检索与实时分析
-
大规模图算法在京东广告的实践
-
阿里妈妈搜索广告 CTR 模型的“瘦身”之路
-
2021 年 4 月份 ,NLP 算法岗面试题总结
-
精选机器学习面试题,斩获一线互联网公司机器学习岗 offer
-
机器学习高频面试真题整理
-
Flink + Iceberg 在去哪儿的实时数仓实践
-
阿里飞猪个性化搜索排序探索实践
-
2021 年 5 月滴滴算法岗:三面拿下 offer,面试题分享
-
Elasticsearch 搜索性能优化实践,单机 QPS 提升 120%
-
向广大网友请教一个可能比较低智商的问题,万分感谢!
-
美团外卖美食知识图谱的迭代及应用
-
京东超大规模联邦学习探索实践
-
2021 年 CV 岗位精选面试题(21-31)
-
CV 岗位精选面试题(11-13)
-
蜻蜓 FM 信息流推荐探索与实践
-
计算机视觉面试 31 题:CV 面试考点,精准详尽解析(1 - 4 )
-
阿里妈妈是如何做品牌风险管理的
-
【干货篇】bilibili:基于 Flink 的机器学习工作流平台在 B 站的应用
-
4 月 22 日 -5 月 7 日腾讯 nlp 算法实习面试题
-
Flink 和 Pulsar 的批流融合
-
滴滴技术 | 小白也能懂的因果推断科普
-
Flink 在有赞的实践和应用
-
如何破解 HBase+ElasticSearch 组合使用遇到的难题
-
网易云音乐数据服务之路
-
梳理常见的机器学习面试题,你知道几个?
-
因果推断在阿里飞猪广告算法中的实践
-
Apache Flink 在 bilibili 的多元化探索与实践
-
Flink 实时计算在微博的应用
-
腾讯企业微信万亿级日志检索系统
-
数据分析转岗 AI 薪资翻 3 倍多 | 机器学习面试都问些什么?
-
贝壳基于 Flink 的实时计算演进之路
-
详解支撑 7 亿用户搜索的百度图片处理收录中台
-
阿里算法专家谈大规模推荐系统粗排层的设计与实现
-
视频内容理解在手淘逛逛中的应用与落地
-
爱奇艺短视频推荐:多兴趣召回篇
-
机器学习面试 150 题:不只是考 SVM xgboost 特征工程 | 附送【名企 AI 面试 100 题】
-
58 信息安全—营销反作弊业务的算法实践
-
知乎 Flink 数据集成平台建设实践
-
美团算法平台在线服务体系的演进与实践
-
简单阐述下决策树、回归、SVM、神经网络等算法各自的优缺点?
-
Query 理解在美团搜索中的应用
-
贝壳找房 | 基于事理图谱的应用与实践
-
深度拆解特征工程经典案例,掌握比赛上分利器
-
向广大网友请教一个可能比较弱智的问题,万分感谢!
-
美团图数据库平台建设及业务实践
-
我们和腾讯 T16 级专家聊了聊:在 AI 领域深耕的那些年
-
干货篇 | 神策:帮你发现分析数据异常:指标智能预警实践
-
干货篇 | 神策数据:机器学习在用户画像中的应用
-
CTR 预估算法之 FM,实践项目代码包 + 数据集奉上(附链接)
-
kaggle 爱奇艺视频版权检测全流程(附代码、数据集和课件)
-
贝壳找房一站式大数据开发平台实践
-
推荐系统召回全能模型之:FM 模型
-
干货篇 | 观远数据:可解释机器学习原理及应用
-
爱奇艺数据中台的建设实践
-
干货篇 | 58 同城:向量化召回上的深度学习实践
-
支持频繁更新、即席查询:ClickHouse 在爱奇艺视频生产的应用
-
干货 | 携程酒店推荐模型优化
-
如何成为一名技术专家?
-
万字长文 | 详解优酷视频质量评价体系
-
爱奇艺视频推荐领域的 ANN 检索实践
-
深度学习在 58 同城 APP 首页推荐排序上的实践
-
深度学习在 58 同城租房搜索排序中的实践
-
腾讯音乐:全民 K 歌推荐后台架构
-
百度 5G+ 智能时代的多模搜索技术
-
腾讯音乐:全民 K 歌内容挖掘与召回
-
腾讯游戏实时计算应用平台建设实践
-
贝壳找房基于 Druid 的 OLAP 引擎应用实践
-
机器学习模型如何优化干货总结
-
深度语义模型 BERT 在 58 同城搜索的实践
-
爱奇艺大数据生态的实时数仓建设
-
多目标排序模型在腾讯 QQ 看点推荐系统中的应用实践
-
网易游戏基于 Flink 的流式 ETL 建设
-
陌陌 | 模型化召回在陌陌社交推荐的应用和探索
-
网易严选 | DDD 在严选供应链复杂业务系统的落地实践
-
vivo 应用商店推荐系统探索与实践
-
百度知识图谱技术及应用
-
腾讯音乐:全民 K 歌推荐系统架构及粗排设计
-
58 同城 | 搜索引擎实时索引实现和重构
-
58 同城向量检索平台架构实践
-
精华 | 搜索推荐系统实战篇 - 上半篇
-
快手基于 Flink 的实时计算持续优化与实践
-
MMoE 算法在淘宝躺平推荐系统中的应用实践
-
58 同城 | 帮帮商家版智能问答模型优化实践
-
京东搜索在线学习探索实践
-
爱奇艺短视频推荐:粗排篇
-
华为云细粒度文本情感分析及应用
-
58 同城 | 搜索引擎中相似字符串查找那些事儿
-
阿里 | 浅谈系统实现层面稳定性保障
-
基于 Flink SQL 构建流批一体的 ETL 数据集成
-
OPPO 在 A/B 实验分析平台的建设与实践
-
美团酒旅数据治理实践
-
机器学习模型线上线下效果一致性杂谈
-
3 人半年打造语音识别引擎——58 同城语音识别自研之路
-
流批一体生产应用!Bigo 实时计算平台建设实践
-
一文了解阿里一站式图计算平台 GraphScope
-
阿里粗排技术体系与最新进展
-
多媒体内容理解在美图社区的应用实践
-
阿里 | EdgeRec:边缘计算在推荐系统中的应用
-
离线学习、增量学习、在线机器学习的区别
-
AI 手机产品化实践与思考
-
58 同城 | 多目标推荐场景下的深度学习实践
-
Flink 在快手的实践与创新
-
腾讯实时计算平台优化实践
-
阿里飞猪个性化推荐:主题与交互式推荐技术实践
-
贝壳找房 DMP 平台建设实践
-
分布式机器学习平台架构设计
-
浅谈蘑菇街大数据标签平台
-
ccp 后剪枝算法,被剪枝下来的位置替换成什么
-
阿里飞猪搜索技术的应用与创新
-
腾讯全场景实时数仓建设实践
-
技术方案设计的方法论及案例分享
-
贝壳找房 | 复杂订阅条件下,如何实时准确的向用户推送新上房源?
-
Hulu 在 Content Embedding 的探索与实践
-
阿里 | 想为特征交互走一条新的路—CAN
-
娓娓道来图模型、图查询、图计算和图学习知识
-
知乎搜索排序模型的演进
-
深度学习在 58 同城租房搜索排序的应用
-
58 同城 | 联盟广告平台架构及实践
-
知乎 | 搜索文本相关性与知识蒸馏
-
京东搜索排序在线学习的 Flink 优化实践
-
去哪儿网 | 深度学习在酒店售后智能问答场景实践
-
美团配送实时特征平台建设实践
-
电商平台推荐系统解构
-
58 同城 | 基于 Flink 构建实时数仓实践
-
算力经济时代:阿里展示广告引擎的“柔性”变形之路
-
利用 tensorflow 如何可视化卷积核
-
一猜一个准,详解电商的推荐系统的召回策略
-
html 基础学习
-
灵魂匹配:陌生社交 Soul 的增长机制
-
微信搜索引擎中索引的分布式演进
-
腾讯 | 知识图谱补全技术
-
滴滴在 HBase 性能与可用性上的探索与实践
-
达观数据 | 金融知识图谱的构建与应用
-
美团智能问答技术探索与实践
-
字节跳动全链路压测 (Rhino) 的实践
-
贝壳找房 | 基于 Milvus 的向量搜索实践(三)
-
爱奇艺数仓平台建设实践
-
淘系技术 | 首次面向 B 端展开全链路压测!淘系高难度压测实践方案公开
-
58 技术 | Clickhouse 的实践之路
-
携程技术 | 时间序列预测的常见方法及思考
-
腾讯云 Elasticsearch 集群多可用区容灾实现原理及最佳实践
-
有赞技术 | 通用规则平台的设计与应用
-
蘑菇街增量学习番外篇三:deepFM 的动态正则实践
-
蘑菇街增量学习番外篇二:优化器设计理论篇(AdamW、AdaDeltaW、FTRL)
-
蘑菇街增量学习番外篇一:动态正则之 tensorflow 中 div 转 mod 设计(含代码实现)
-
推荐算法的 “五环之歌”
-
网易严选用户画像建设实践
-
网易 | 严选电子面单稳定性治理实践
-
知识增强信息流推荐在保险行业的应用
-
逻辑回归 + GBDT 模型融合原理详解与实战!
-
贝壳找房 | 基于 Milvus 的向量搜索实践(二)
-
微信 AI | 为看一看及搜一搜“去污”—低俗色情识别,AI 怎么做到的?
-
爱奇艺机器学习平台的建设实践
-
腾讯技术 | 数据分析利器:XGBoost 算法最佳解析
-
网易云音乐基于 Flink + Kafka 的实时数仓建设实践
-
完全解析:使用 Faiss 进行海量特征的相似度匹配
-
贝壳找房 | 商业化算法中台架构实践
-
携程 | “深耕内容”背景下,携程如何做景酒优质内容的挖掘
-
快手 | 端上智能在快手上下滑推荐取得 APP 时长 +1% 的应用实践
-
达观数据 | 深度解读知识图谱在工业质量体系中的应用实践
-
腾讯 | 大幅降低存储成本,Elasticsearch 可搜索快照是如何办到的?
-
京东 Flink 优化与技术实践
-
《学会提问》读书笔记
-
微信看一看:推荐系统用户画像构建指南
-
FreeWheel | 实时数据系统弹性伸缩实践
-
贝壳找房 | 基于 Milvus 的向量搜索实践(一)
-
有赞 | 领域建模在有赞客户领域的实践
-
阿里 | ClickHouse 在手淘流量分析业务实践
-
阿里 | 信息流推荐的用户增长机制
-
谁也不必告别北京
-
书单 | 搜索领域大牛都读什么书?
-
【功能升级】优化搜索体验
-
可解释机器学习发展和常见方法!
-
特征工程|文本特征处理的四大类主流方法
-
基于 Flink+Iceberg 构建企业级实时数据湖
-
陌陌直播如何做到推荐系统的从 0 到 1
-
vivo 技术 | 分布式搜索引擎 Elasticsearch 的架构分析
-
腾讯微信 | 看一看实时相关推荐,满足你对同主题文章的“意犹未尽”
-
58 同城 | 商业数据仓库建设实践
-
百度事件知识图谱技术与应用
-
论文|Airbnb Embedding 的实践和思考
-
阿里 | 优酷大数据 OLAP 技术选型
-
干货 | 你想知道的 ABTest 实验知识全在这里了
-
干货 | 中文分词技术详解
-
阿里 | 我看技术人的成长路径
-
美团本地生活场景的短视频分析
-
网易云音乐推荐中的用户行为序列深度建模
-
Linux I/O 原理和 Zero-copy 技术全面揭秘
-
58 同城 AI 算法平台的演进与实践
-
贝壳找房 | 面向 AI 技术的贝壳 OLAP 平台架构演进
-
贝壳找房 | 面向 AI 技术的贝壳一站式大数据开发平台实践
-
贝壳找房 | 面向 AI 技术的贝壳智能推荐平台建设实践
-
滴滴技术 | 滴滴语音交互自然语言理解探索与实践
-
58 同城 | 58 同镇下沉市场中的推荐技术实践
-
腾讯技术 | 用万字长文聊一聊 Embedding 技术
-
语义向量召回之 ANN 检索
-
Apache Doris 在京东搜索实时 OLAP 中的应用实践
-
阿里文娱深度语义搜索相关性探索
-
丁香园 | 图表示学习 实践与思考
-
丁香园 | 搜索中的 Query 扩展技术(二)
-
阿里 Alink:基于 Flink 的机器学习平台
-
58 同城 | 槽位识别与纠错在智能语音机器人中的实践
-
诸葛越:关于算法工程师职业发展的思考
-
知识图谱在小米的应用与探索
-
漫谈语义相似度与语义向量表征
-
菜鸟网络实时数仓 2.0 进阶之路
-
百亿级实时计算系统性能优化–—Elasticsearch 篇
-
解读:为什么要做特征归一化 / 标准化?
-
腾讯看点视频推荐索引构建方案
-
深度学习在 58 同城首页推荐中的应用
-
蘑菇街首页推荐多目标优化之 reweight 实践:一把双刃剑?
-
58 同城搜索云 – 云搜核心技术揭秘
-
阿里高级技术专家:成长路上如何破局?
-
生产实践 | Flink + 直播(二)| 如何建设实时公共画像维表?
-
生产实践 | 基于 Flink 的直播实时数据建设 (一)| 需求和架构篇
-
干货 | 携程 Elasticsearch 数据同步实践
-
数据增强在贝壳找房文本分类中的应用
-
腾讯 | 搜你所想,从 Query 意图识别到类目识别的演变
-
携程 | 机器学习模型在携程海外酒店推荐场景中的应用
-
携程 | 响应速度与智能化如何平衡,携程酒店搜索系统实践
-
携程 | 用户画像在携程商旅的实践
-
Flink 流量控制与反压机制完全总结
-
深入理解推荐系统:超长用户行为序列建模
-
深入理解推荐系统:推荐系统中的 attention 机制
-
深入理解推荐系统:Fairness、Bias 和 Debias
-
第四范式 | 如何构建一个好的电商搜索引擎?
-
干货 | 用户画像在用户生命周期中的应用
-
腾讯技术 | 新一代搜索引擎项目 ZeroSearch 设计探索
-
推荐系统中如何做多目标优化
-
360 展示广告智能化演进
-
文本相关性在蘑菇街搜索推荐排序系统中的应用
-
《领域驱动设计 DDD》核心知识梳理笔记
-
网易严选 | “全能选手”—Embedding 召回表征算法实践
-
滴滴 Elasticsearch 集群跨版本升级与平台重构之路
-
京东推荐系统中的兴趣拓展如何驱动业务持续增长
-
美团智能搜索模型预估框架 Augur 的建设与实践
-
机器学习中的特征工程总结!
-
阿里深度召回模型实践
-
腾讯技术 | 交互式分析领域,为何 ClickHouse 能够杀出重围?
-
用户画像在阅文的探索与实践
-
阿里 | 自然语言处理在开放搜索中的应用
-
搜索引擎新架构:与 SQL 不得不说的故事
-
Angel:深度学习在腾讯广告推荐系统中的实践
-
知识蒸馏:如何用一个神经网络训练另一个神经网络
-
蘑菇街 DSP 广告实践
-
贝壳找房 | 基于内容热度的推荐
-
美团外卖实时数仓建设实践
-
携程技术 | 为什么我们要从 Elasticsearch 迁移到 ClickHouse?
-
如何维持搜索系统的迭代和运转?
-
网易数据湖探索与实践
-
深度强化学习在滴滴路径规划中的探索实践
-
滴滴技术 | Presto 在滴滴的探索与实践
-
基于 Apache Doris 的小米增长分析平台实践
-
作业帮基于 Apache Doris 的数仓实践
-
58 同城 | 多样性算法在 58 部落的实践和思考
-
网易严选 - 数仓规范和评价体系
-
亿级用户,腾讯看点信息流推荐系统的架构挑战
-
贝壳找房 | 降本提效,贝壳搜索推荐架构统一之路
-
浅谈性能优化与稳定性保障实践
-
即刻技术 | 推荐系统 Embedding 向量召回在即刻的工程实践
-
网易 | 向量体系 (Embedding) 在严选的落地实践
-
滴滴技术 | 数据挖掘技术在轨迹数据上的应用实践
-
腾讯 | 从零开始了解推荐系统全貌
-
向量召回在阿里躺平 APP 的实践
-
字节跳动 Flink 单点恢复功能实践
-
同义变换在百度搜索广告中的应用
-
前沿重器 [2] | 美团搜索理解和召回
-
Java 编程方法论:响应式 Spring Reactor 3 设计与实现
-
要提升微信看一看推荐混排的长期收益?试试深度强化学习
-
深度学习之表示学习(理论结合实践的思考)
-
用户画像实践:神策数据标签生产引擎架构
-
贝壳找房 |【知识图谱系列】开篇:基于 KBQA 的经纪人咨询助手
-
腾讯信息流热点挖掘技术实践
-
超详细:完整的推荐系统架构设计
-
淘系技术 | 单元测试实践篇:Mock 框架
-
如何基于 Flink 生成在线机器学习的样本?
-
阿里定向广告新一代 Rank 技术
-
蘑菇街首页推荐视频流——增量学习与 wide&deepFM 实践(工程 + 算法)
-
网易大数据用户画像实践
-
如何实现一个搜索自动补全器?
-
让推荐系统会“说话”,达观数据推荐理由设计实践
-
贝壳找房 | Thrift 中 TNonblockingServer 工作流程解析
-
阿里巴巴电商搜索推荐实时数仓演进之路
-
算法工程师之路—搜索召回策略篇
-
使用 SQL 窗口函数进行增长数据分析
-
第四范式 | 推荐系统架构治理
-
腾讯 | 深度 CTR 预估模型在应用宝推荐系统中的探索
-
58 同城 | 深度学习在商业排序的应用实践
-
CSCNN:新一代京东电商广告排序模型
-
Elasticsearch 性能调优
-
第四范式 | 基于 Spark 的大规模推荐系统特征工程
-
滴滴 | 数据仓库指标体系建设实践
-
滴滴 | 实时数仓在滴滴的实践和落地
-
58 同城 | 本地服务场景下的流量分发算法实践
-
淘宝搜索模型核心技术:用户建模篇
-
阿里飞猪个性化推荐:召回篇
-
有赞 | 为什么技术同学需要有更多的业务思考?
-
微博推荐算法实践与机器学习平台演进
-
优酷提出基于图执行引擎的算法服务框架,系统架构概览
-
Embedding 在腾讯应用宝的推荐实践
-
阿里定向广告最新突破:面向下一代的粗排排序系统 COLD
-
Elasticsearch 的查询毛刺问题原因分析
-
声网 Agora 超分辨率图像性能挑战赛开赛啦~6 万 + 现金大奖邀你来战!
-
【社招】美团点评 Java 开发工程师
-
Elasticsearch DSL 语法中 queries/filters 执行顺序探秘
-
基于内容和上下文的音乐推荐
-
滴滴 ElasticSearch 千万级 TPS 写入性能翻倍技术剖析
-
ES 在十几亿的数量级下如何提升查询效率?
-
汽车之家电商平台秒杀系统架构实现
-
网站日志实时分析之 Flink 处理实时热门和 PVUV 统计
-
第三十九期人工智能深度学习 DeepLearning----Tensorflow 核心技术实战培训班
-
电商知识图谱
-
预训练语言模型在网易严选的应用
-
基于机器学习的文本分类!
-
搭建企业级 AB/Testing 平台实践
-
PB 级大规模 Elasticsearch 集群运维与调优实践
-
微博基于 Flink 的机器学习实践
-
什么时候值得去使用上下文嵌入 (Embedding)?
-
深入互联网广告中的出价模式(补充篇)
-
深入互联网广告中的出价模式 (上中下完整版)
-
用户画像方法论与工程化解决方案
-
微信 “看一看” 内容理解与推荐
-
58 同城 | 多业务融合推荐策略实践与思考
-
文字识别在高德地图数据生产中的演进
-
基于 Apache Flink 的爱奇艺实时计算平台建设实践
-
58 技术 | 金融数仓体系建设
-
美团搜索中 NER 技术的探索与实践
-
如何快速入门大数据
-
机器学习中算法与模型的区别
-
详文解读微信「看一看」多模型内容策略与召回
-
滴滴司机调度系统实践
-
美团点评 | 智能搜索模型预估框架的建设与实践
-
吴恩达老师的作业问题关于 SVM 向量机采用核函数计算出结果怎样才能用
-
基于 BERT 的 ASR 纠错
-
有赞 ABTest 系统:数据驱动增长实践
-
救火必备!问题排查与系统优化手册
-
淘系技术 | 极简而高效的沟通管理法
-
数据智能在二手车业务场景中的探索与沉淀 - 业务标签挖掘
-
所有机器学习项目都适用的检查清单
-
【特征工程】时序特征挖掘的奇技淫巧
-
平安寿险 AI 团队 | 文本纠错技术探索和实践
-
微信「看一看」 推荐排序技术揭秘
-
TensorFlow 中最大的 30 个机器学习数据集
-
BERT 在美团搜索核心排序的探索和实践
-
医疗搜索中的 query 词权重算法探索
-
优酷视频元素内容召回系统:多级多模态引擎探索
-
【布道师系列】周晓凌——乘风而来,利用数据科学平台解决运筹学问题
-
如何用 OKR 促进跨团队协同
-
【综述】基于知识图谱的推荐系统综述
-
一文总结词向量的计算、评估与优化
-
深入浅出词嵌入技术
-
[详解] 一文读懂 BERT 模型
-
Elasticsearch 遇上 BERT:使用 Elasticsearch 和 BERT 构建搜索引擎
-
机器学习数学基础:常见分布与假设检验
-
细粒度实体分类论文综述:(二)
-
命名实体识别 NER 论文综述(一)
-
图文并茂带你了解依存句法分析
-
机器学习模型评估与超参数调优详解
-
MRR vs MAP vs NDCG:具有排序意义的度量指标的可视化解释及使用场景分析
-
干货 | 查询耗时降低 2/3,携程度假搜索引擎架构优化
-
NLP 模型的产品化
-
汽车之家机器学习平台的架构与实践
-
腾讯技术工程 | 推荐系统 embedding 技术实践总结
-
IDC 再评中国机器学习开发平台市场,九章云极位列三甲!
-
准确率、精准率、召回率、F1,我们真了解这些评价指标的意义吗?
-
主流推荐引擎技术及优缺点分析
-
塔勒布《反脆弱》读后感
-
趣头条基于 Flink+ClickHouse 的实时数据分析平台
-
58 同城 | 深度召回在招聘推荐系统中的挑战和实践
-
异常检测
-
拼多多创始人黄峥:我的人生经历和创业理念
-
算法工程师如何应对业务方和老板的灵魂拷问?
-
程序员精进之路:性能调优利器 – 火焰图
-
深度学习在高德 POI 鲜活度提升中的演进
-
关键短语抽取及使用 BERT-CRF 的技术实践
-
内容理解在新浪微博广告中的应用
-
医疗健康领域的短文本解析探索(三 ) ---- 文本纠错
-
医疗健康领域的短文本解析探索(二)
-
医疗健康领域的短文本解析探索(一)
-
谈谈医疗健康领域的 Phrase Mining
-
58 同城 | Embedding 技术在房产推荐中的应用
-
来阿里 6 年,我是如何快速成长的?
-
微众银行在联邦推荐算法上的探索及应用
-
腾讯万亿级 Elasticsearch 内存效率提升技术解密
-
五年磨一剑:滴滴顺风车服务端之稳定性规范
-
深入理解推荐系统:排序
-
深入理解 YouTube 推荐系统算法
-
京东电商搜索中的语义检索与商品排序
-
滴滴数据驱动利器之 AB/Test 实践
-
美团配送 A/B 评估体系建设与实践
-
谈一谈NLP中语言模型的发展
-
见微知著,你真的搞懂 Google 的 Wide&Deep 模型了吗?
-
用户画像技术及方法论
-
【布道师系列】杨健——30 天到 3 分钟的改变!下篇
-
为什么 L2 正则化能够缓解模型过拟合并使得模型更简单
-
知识蒸馏在推荐系统的应用
-
Embedding 技术在推荐系统中的实践总结
-
xDeepFM 算法理论与实践
-
Wide&Deep 算法理论与实践
-
推荐系统系列(二):FFM 算法理论与实践
-
推荐系统系列(一):FM 算法 理论与实践
-
深度学习推荐系统中各类流行的 Embedding 方法(下)
-
【深度语义匹配模型】实践篇:语义匹配在贝壳找房智能客服中的应用
-
请问深度学习里面生成式模型验证常用的一个数据集来源(有图)
-
算法工程师必知必会的经典模型系列一:Transformer 模型串讲
-
基于多任务学习和负反馈的深度召回模型
-
算法工程师也会遇到 35 岁这道坎么?
-
图解 SimCLR 框架,用对比学习得到一个好的视觉预训练模型
-
从算法工程师到主管的转变,需要改变的是什么
-
NLP 技术在金融资管领域的落地实践
-
BERT 的优秀变体:ALBERT 论文图解介绍
-
贝壳找房【深度语义匹配模型】原理篇二:交互篇
-
推荐系统中稀疏特征 Embedding 的优化表示方法
-
Netflix:使用 A/B 测试来找到最佳的插图
-
搜索相关性算法在 DiDi Food 中的探索
-
菜鸟实时数仓技术架构演进
-
Netflix 中的插图个性化推荐
-
推荐系统中不得不说的 DSSM 双塔模型
-
贝壳找房【深度语义匹配模型 】原理篇一:表示型
-
使用嵌入来做个性化的搜索推荐:来自 Airbnb
-
干货 | 业界实时数据体系架构
-
字节跳动—实习算法面经
-
深度时空网络、记忆网络与特征表达学习在 CTR 预估中的应用
-
深度学习推荐系统中各类流行的 Embedding 方法(上)
-
我的 ElasticSearch 认证工程师之路
-
机器学习工程化模型部署的几种方式总结
-
透过现象看机器学习:奥卡姆剃刀,没有免费的午餐,丑小鸭定理等
-
字节游戏急招数据挖掘工程师 - 帖子
-
字节游戏急招数据挖掘工程师
-
究竟什么是图数据库,它有哪些应用场景?
-
基于强化学习的 Contextual Bandits 算法在推荐场景中的应用
-
超强整理,非科班硕士的算法面经 (阿里 腾讯 字节 美团)
-
贝壳找房【语言模型系列】实践篇:ALBERT 在房产领域的实践
-
一文详尽之 SVM 支持向量机算法!
-
搜索中的 Query 理解及应用
-
汽车之家如何构建用户画像
-
搜索中的 Query 扩展技术
-
各大 AI 研究院共 35 场 NLP 算法岗面经
-
详解图表示学习经典算法 node2vec
-
搜索引擎背后的经典数据结构和算法
-
搜索系统中的意图识别
-
推荐系统的未来发展趋势
-
实验室小师弟的新鲜春招算法面经 (阿里搜索,微信,微软等)
-
字节跳动混沌工程实践总结
-
SHAP 值的解释,以一种你期望的方式解释给你听
-
黑盒模型实际上比逻辑回归更具可解释性
-
浅谈搜索系统中 Query 理解和分析
-
干货! 搜索系统中的深度匹配模型
-
干货! 推荐系统中的深度匹配模型
-
线下 auc 涨,线上 ctr/cpm 跌的原因和解决办法
-
CS224w L11. LinkAnalysis_PageRank 算法
-
模型剪枝技术原理及其发展现状和展望
-
大规模特征向量检索算法总结 (LSH PQ HNSW)
-
贝壳找房—置信度计算在语音识别系统中的应用
-
产品经理,项目经理和技术经理是如何一起协作管理的?
-
Lucene 源码系列——索引文件的生成(十二)之 dim&&dii
-
2020 最新版《神经网络与深度学习》中文版更新完毕!(附 pdf 下载)
-
阿里文娱优酷视频搜索算法应用实践与思考
-
贝壳找房【语言模型系列】原理篇二:从 ELMo 到 ALBERT
-
“疫情”黑天鹅,让企业管理数字化转型迫在眉睫
-
算法工程师常见面试问题及相关资料汇总
-
用 TensorFlow Extended 实现可扩展、快速且高效的 BERT 部署
-
干货 | 内容型产品 Feed 流的生成、效果评估及优化
-
机器学习中的隐私保护
-
一个关于项目管理者与程序猿之间的笑话
-
PTMs:史上最全面总结 NLP 预训练模型
-
Apache Flink OLAP 引擎性能优化及应用
-
企业如何选择适合自己的项目管理软件?
-
贝壳找房—【图数据库系列】Dgraph 原理篇
-
贝壳找房—【图数据库系列】Dgraph 简介篇
-
贝壳找房—【图数据库系列】之 JanusGraph VS Dgraph:贝壳分布式图数据库技术选型之路
-
阿里—飞猪的“猜你喜欢”如何排序?
-
你所不知道的,华为项目管理之道!
-
智变·未来——九章云极 COOL NEWS 发布会
-
6 个你应该用用看的用于文本分类的最新开源预训练模型
-
阿里广告 CTR 预估中用户行为学习和记忆建模
-
贝壳找房【语言模型系列】原理篇一:从 one-hot 到 Word2vec
-
个性化搜索的介绍,推荐和搜索的强强结合
-
Lucene 源码系列——pos pay 索引文件
-
Lucene 源码系列——tim tip 索引文件
-
Lucene 源码系列——fdx fdt 索引文件
-
Lucene 源码系列——tvx tvd 索引文件
-
Lucene 源码系列——默认 merge 策略 TieredMergePolicy
-
Lucene 源码系列—— LogMergePolicy
-
Lucene 源码系列——工具类 FixedBitSet
-
Lucene 源码系列——Automaton 有穷自动机 (DFA)
-
Lucene 源码分析——BKD-Tree
-
Lucene 源码系列——查询原理(下)
-
Lucene 源码系列——查询原理(上)
-
i 技术会 | 爱奇艺效果广告探索与实践
-
Lucene 源码系列—— Collector 收集各个 Segment 命中的 docs
-
Lucene 源码系列——LRUQueryCache
-
Lucene 源码系列——多个 SHOULD 的 Query 的倒排求并集
-
Lucene 源码系列——多个 MUST 的 Query 的倒排求交集
-
Lucene 源码系列——索引文件的生成(十一)之 dim&&dii(Lucene 8.4.0)
-
Lucene 源码系列——索引文件的生成(十)之 dim&&dii(Lucene 8.4.0)
-
Lucene 源码系列——索引文件的生成(九)之 dim&&dii(Lucene 8.4.0)
-
Lucene 源码系列——索引文件的生成(八)之 dim&&dii(Lucene 8.4.0)
-
Lucene 源码系列——索引文件的生成(七)之 tim&&tip
-
Lucene 源码系列——索引文件的生成(六)之 tim&&tip
-
Lucene 源码系列——索引文件的生成(五)之 tim&&tip
-
Lucene 源码系列——索引文件的生成(四)之跳表 SkipList
-
Lucene 源码系列——索引文件的生成(三)之跳表 SkipList
-
Lucene 源码系列——索引文件的生成(二)之 doc&&pay&&pos
-
Lucene 源码系列——索引文件的生成(一)之 doc&&pay&&pos
-
Lucene 源码系列——倒排表
-
Lucene 源码系列——DirectWriter&&DirectReader
-
Lucene 源码系列—— PackedInts
-
Lucene 源码系列——LZ4
-
Lucene 源码分析——FST
-
特斯拉宣布降薪!开源节流,疫情之下如何提升企业管理效能
-
Lucene 源码系列——BytesRefHash
-
Lucene 源码系列——BulkOperationPacked
-
Lucene 源码系列——去重编码 (dedupAndEncode)
-
Lucene 源码系列——IntBlockPool 类
-
Lucene 源码系列——BooleanQuery 介绍
-
从罗永浩直播刷屏,来看如何做好项目管理
-
CTR 预估在动态样式建模和特征表达学习方面的进展
-
图解半监督学习 FixMatch,只用 10 张标注图片训练 CIFAR10
-
如何高效的进行多项目管理?
-
构造 IndexWriter 对象(十)
-
构造 IndexWriter 对象(九)
-
构造 IndexWriter 对象(八)
-
构造 IndexWriter 对象(七)
-
构造 IndexWriter 对象(六)
-
构造 IndexWriter 对象(五)
-
构造 IndexWriter 对象(四)
-
构造 IndexWriter 对象(三)
-
构造 IndexWriter 对象(二)
-
构造 IndexWriter 对象(一)
-
如何构建 A/B 测试系统,其核心功能有哪些?
-
有赞搜索中台的探索与实践
-
字节跳动核心竞争力到底是什么?
-
DeepTables: 为结构化数据注入深度学习的洪荒之力
-
零基础入门数据挖掘——一文学习模型融合!从加权融合到 stacking, boosting
-
零基础入门数据挖掘——建模调参
-
零基础入门数据挖掘——特征工程实战
-
零基础入门数据挖掘——数据分析实战
-
DevOps 在企业项目中的实践落地
-
怎样评价推荐系统的结果质量?
-
初探 GNN- 文本表示学习
-
Java 线程池实现原理及其在美团业务中的实践
-
深入理解推荐系统:召回
-
敏捷开发流程, 您缺一个这样的协作平台
-
基于知识图谱的语义理解技术及应用
-
【腾讯】揭秘微信 “看一看” 是如何为你推荐的
-
揭秘微信「看一看」如何精准挖掘你感兴趣的内容
-
用户画像从 0 到 100 的构建思路
-
Word delimiter graph token filter(word_delimiter_graph 词元过滤器)
-
BiLSTM 上的 CRF,用命名实体识别任务来解释 CRF(4)
-
BiLSTM 上的 CRF,用命名实体识别任务来解释 CRF(3)推理
-
阿里文娱多模态视频分类算法中的特征改进
-
通俗的理解牛顿 - 莱布尼茨公式及其证明
-
白话条件随机场(conditional random field)
-
阿里文娱算法公开课 #02:算法工程师的进阶之路(进阶篇)
-
阿里文娱算法公开课 #03:算法工程师的核心技能(CV 篇)
-
阿里文娱算法公开课 #04:算法工程师的核心技能 - 搜索推荐篇
-
BiLSTM 上的 CRF,用命名实体识别任务来解释 CRF(2)损失函数
-
效果工具链之算法迭代篇
-
效果工具链之运营平台篇
-
如何设计一个 A/B test?
-
阿里文娱智能营销增益模型 (Uplift Model) 技术实践
-
BiLSTM 上的 CRF,用命名实体识别任务来解释 CRF(1)
-
从文本中进行关系抽取的几种不同的方法
-
字节 AI Lab-NLP 算法热乎面经
-
深度学习在花椒直播中的应用—推荐系统冷启动算法
-
干货 | Softmax 函数详解
-
深度学习在阿里 B2B 电商推荐系统中的实践
-
对 Reformer 的深入解读
-
Self-Attention 与 Transformer
-
通用的图像 - 文本语言表征学习:多模态预训练模型 UNITER
-
【推荐系统】协同过滤推荐算法
-
怎么理解基于机器学习“四大支柱”划分的学习排序方法
-
敏捷开发的那些事
-
【全面总结】机器学习经典书 PRML 相关资料全面总结:中文译本,官方代码,课程视频,学习笔记等等
-
如何只使用标签来构建一个简单的电影推荐系统
-
信息流推荐在凤凰新闻的业务实践
-
机器学习加持的 Airbnb 体验搜索排序实践
-
理解计算机视觉中的损失函数
-
项目管理软件这么多,为什么我只推荐它?
-
知识图谱辅助的个性化推荐系统
-
从阿里的 User Interest Center 看模型线上实时 serving 方法
-
深度学习在省钱快报推荐排序中的应用与实践
-
百度凤巢算法面经
-
你们都在用什么项目管理软件?
-
广告算法在阿里文娱用户增长中的实践
-
【超详细讲解】深入理解 GBDT 二分类算法
-
搜索系统中的纠错问题
-
【算法面经系列】百度、寒武纪、科大讯飞、追一科技、腾讯、作业帮算法面经
-
【算法面经系列】头条 + 腾讯 算法工程师面经(NLP 实习)
-
如何做好项目管理,做好人人都是项目经理
-
微软小冰:如何构建人格化的对话系统
-
【论文笔记】TEM: 结合 GBDT 叶节点嵌入的可解释推荐模型
-
图解 Reformer:一种高效的 Transformer
-
Flink 如何支持特征工程、在线学习、在线预测等 AI 场景?
-
算法在岗一年的经验总结
-
项目经理必备的项目管理工具——CORNERSTONE
-
Flink Checkpoint 原理流程以及常见失败原因分析
-
58 同城智能语音质检系统架构实践
-
淘系高级技术专家的十年 | 既往不恋,纵情向前!
-
【贝壳找房】关系图谱在贝壳的构建和应用
-
NLP.TM[28] | 浅谈 NLP 算法工程师的核心竞争力
-
机器学习的可解释性:因果推理和稳定学习
-
远程办公 | 适应时代的工作模式
-
在阿里,新人如何快速上手项目管理?
-
图解自监督学习,人工智能蛋糕中最大的一块
-
让 AI“读懂”短视频,爱奇艺内容标签技术解析
-
字节跳动自研万亿级图数据库 & 图计算实践
-
水墨 - 在线 Markdown 编辑器
-
如何扩充知识图谱中的同义词
-
万字长文梳理 CTR 预估模型发展过程与关系图谱
-
BERT 的嵌入层是如何实现的?看完你就明白了
-
浅谈流式模型训练体系
-
“人工智能”初创公司所面临的问题
-
汽车之家推荐系统排序算法迭代之路
-
“云开工”成主流,远程办公需求暴涨 663%
-
疫情之下 | 教你远程办公高效又安全
-
阿里 B 类电商用户增长实践
-
二部图表示学习 | Graph Convolutional Matrix Completion
-
为什么机器学习项目非常难管理?
-
不要犯战略性的失误——如何合理制定推荐系统的优化目标?
-
工作效率低? 这个锅远程办公不背
-
关于使用 pytorch 能否对 SE ResNext 进行预训练
-
项目经理: 在家远程办公如何提高工作效率?
-
BERT, ELMo, & GPT-2: 这些上下文相关的表示到底有多上下文化?
-
一些 NLP 的面试问题
-
停班不停工,远程办公助力击穿疫情下企业困局
-
自然语言理解(NLU)难在哪儿?
-
视频 | 信息流推荐技术在凤凰网的业务实践
-
Elasticsearch 高级调优方法论之——根治慢查询!
-
LinkedIn 招聘推荐系统中的机器学习的威力
-
为什么我们选择 LambdaMART 作为我们的酒店排序模型
-
如何(以及为什么需要)创建一个好的验证集
-
美团一站式机器学习平台建设实践
-
携程实时智能检测平台实践
-
HMM 模型在贝壳对话系统中的应用
-
NLP 中文分词知识梳理
-
阿里 B2B:融合 Matching 与 Ranking 的个性化 CTR 预估模型
-
部署基于嵌入的机器学习模型的通用模式
-
视频 | 阿里文娱搜索算法实践和思考
-
从算法到应用:滴滴端到端语音 AI 技术实践
-
深入 Lucene 搜索引擎原理
-
掌握它才说明你真正懂 Elasticsearch
-
如何增强推荐系统模型更新的实时性?
-
深度学习在花椒直播中的应用——排序算法篇
-
35 岁技术人如何转型做管理?阿里高级算法专家公开 10 大思考
-
知识图谱基本概念 & 工程落地常见问题
-
2020 “跳槽”还是“卧槽”,你想好了吗?
-
敏捷开发实践之 Scrum 方法运用
-
机器学习在马蜂窝酒店聚合中的应用初探
-
项目管理软件的应用现状与发展趋势
-
亚马逊畅销书的 NLP 分析——推荐系统、评论分类和主题建模
-
推荐系统 pipeline 的构建过程和总体架构描述。
-
做机器学习项目的 checklist
-
敏捷实践经验分享,企业如何在敏捷开发中实施 DoD
-
推荐系统论文回顾:神经协同过滤理解与实现
-
阿里淘外商业化广告工程架构实践
-
腾讯万亿级 Elasticsearch 技术解密
-
新一代海量数据搜索引擎 TurboSearch 来了!
-
机器学习在微博 O 系列广告中的应用
-
不仅仅用 CTR:通过人工评估得到更好的推荐
-
搜索,推荐,广告系统架构及算法技术资料大合集吐血整理——2019 年终分享
-
毕业 10 年才懂,解决问题的能力原来这么重要
-
跨境电商 Etsy 如何使用交互行为类型进行可解释推荐
-
机器学习模型的可解释性
-
个性化海报在爱奇艺视频推荐场景中的实践
-
华为招聘
-
华为人才招聘
-
Query 理解和语义召回在知乎搜索中的应用
-
推荐系统技术演进趋势:从召回到排序再到重排
-
程序员必知必会的零拷贝技术
-
推荐系统的发展与简单回顾
-
沟通的重要工具——乔哈里视窗
-
NLP 技术在微博 feed 流中的应用
-
机器学习 - 一文理解 GBDT 的原理 -20171001
-
LR+FTRL 算法原理以及工程化实现
-
推荐场景中召回模型的演化过程
-
读《影响力》这本书
-
系统重构的道与术
-
CTO 被裁,离职前给组了的高级开发们 8 个建议。
-
记录:tf.saved_model 模块的简单使用(TensorFlow 模型存储与恢复)
-
淘宝如何拥抱短视频时代?视频推荐算法实战
-
解密淘宝推荐实战,打造 “比你还懂你” 的个性化 APP
-
风控特征—时间滑窗统计特征体系
-
解密商业化广告投放平台技术架构
-
深入理解 AQS 之 Condition 源码
-
IJCAI 2019 | 为推荐系统生成高质量的文本解释:基于互注意力机制的多任务学习模型
-
Hi, xiaolongnk
-
Learning to rank 基本算法小结
-
知识结构化在阿里小蜜中的应用
-
万字长文!推荐系统算法岗校招面试经验 & 学习心得
-
标签平滑 & 深度学习:Google Brain 解释了为什么标签平滑有用以及什么时候使用它 (SOTA tips)
-
经验:一个秒杀系统的设计思考
-
视频:美图个性化 push AI 探索之路
-
优酷 DSP 广告投放系统架构实践
-
浅谈微视推荐系统中的特征工程
-
知识图谱的自动构建
-
美团点评效果广告实验配置平台的设计与实现
-
腾讯信息流内容理解技术实践
-
深度 |58 商业流量排序策略优化实践
-
美团点评 Kubernetes 集群管理实践
-
张一鸣:如何应对公司变大之后的管理挑战
-
如何提升「会议效率」
-
【有赞】数据资产,赞之治理
-
搜索引擎中的 Web 数据挖掘
-
几十亿数据查询 3 秒返回,ES 性能优化实战!
-
基于多视角学习和个性化注意力机制的新闻推荐
-
Walrus- 一个轻量级 olap 查询框架
-
微服务高可用利器——Hystrix 熔断降级原理 & 实践总结
-
【推荐实践】微博在线机器学习和深度学习实践
-
马蜂窝推荐排序算法模型是如何实现快速迭代的
-
在线学习在爱奇艺信息流推荐业务中的探索与实践
-
【58 同城】如何从 0 到 1 构建个性化推荐?
-
机器学习在 58 二手车估价系统实践
-
萌新想请教一下 特征选择 的问题
-
实时计算引擎在贝壳的应用与实践
-
今日头条在消息服务平台和容灾体系建设方面的实践与思考
-
推荐系统中模型训练及使用流程的标准化
-
知识图谱与语义分析技术介绍(附前沿论文解读)
-
网络图模型知识点综述
-
360 展示广告召回系统的演进
-
Tensorflow 的 checkpoint 教程
-
陈曦:性能与稳定并存 Elasticsearch 调优实践
-
3000 台服务器不宕机,微博广告系统全景运维大法
-
由 Finalizer 和 SocksSocketImpl 引起的 Fullgc 问题盘点
-
爱奇艺效果广告的个性化探索与实践
-
深度学习技术在美图个性化推荐的应用实践
-
UC 信息流推荐模型在多目标和模型优化方面的进展
-
Facebook 面向个性化推荐系统的深度学习推荐模型
-
美团配送交付时间轻量级预估实践
-
58 招聘推荐排序算法实战与探索
-
阿里如何实现秒级百万 TPS?搜索离线大数据平台架构解读
-
会向业务“砍需求”的技术同学,该具备哪 6 点能力?
-
UC 国际信息流推荐中的多语言内容理解
-
10 年 +,阿里沉淀出怎样的搜索引擎?
-
Hi, 2019_nickname
-
老大难的 GC 原理及调优,这下全说清楚了
-
以 YouTube 论文学习如何在推荐场景应用强化学习
-
深度度量学习中的损失函数
-
UC 信息流视频标签识别技术
-
常用学习算法
-
阿里妈妈:品牌广告中的 NLP 算法实践
-
OCPC 广告算法在凤凰新媒体的实践探索
-
降低软件复杂性的一般原则和方法
-
基于 Elastic Stack 的海量日志分析平台实践
-
支付系统高可用架构设计实战,可用性高达 99.999!
-
推荐系统应该如何保障推荐的多样性?
-
浅谈 UC 国际信息流推荐
-
我在亚马逊学到的三样东西,为我的机器学习职业之路做好了准备
-
关于数据驱动的重新思考
-
头条,美团,滴滴,京东及其它公司面试经验分享!
-
CCKS 2019 | 百度 CTO 王海峰详解知识图谱与语义理解
-
模型评估指标 AUC 和 ROC,这是我看到的最透彻的讲解
-
GitHub 标星 8k+,最后还有什么想问的么?对面试官的灵魂 50 问!
-
Andrew Ng(吴恩达) 关于机器学习职业生涯以及阅读论文的一些建议
-
A/B 测试中我们都会犯的十个常见错误
-
AI 在爱奇艺视频广告中的探索
-
快看漫画个性化推荐探索与实践
-
微博广告策略工程架构体系演进
-
请问 example oracle 和后面那个红框的分布是什么意思?
-
构建可解释的推荐系统
-
解读:滴滴“猜你去哪儿”功能的算法实现
-
推荐系统走向下一阶段最重要的三个问题
-
电商推荐那点事
-
风控建模流程:以京东群体感知项目为例
-
每天超 50 亿推广流量、3 亿商品展现,阿里妈妈的推荐技术有多牛?
-
聊聊 Linux IO 栈
-
阿里妈妈深度树检索技术(TDM)及应用框架的探索实践
-
推荐系统工程难题:如何做好深度学习 CTR 模型线上 Serving
-
360 搜索的百亿级网页搜索引擎架构实现
-
FSICFR 或者 CFRM 算法训练后如何应用于实际的游戏中?
-
京东电商推荐系统实践
-
< 机器学习实战 高清中英 源代码 > 分享
-
分布式锁用 Redis 还是 Zookeeper?
-
InnoDB 事务与分布式事务中一些关键问题
-
hello, 初次见面请多关注
-
ESearch: 58 搜索内核设计与实践—实时索引篇
-
两万字深度介绍分布式系统原理,一文入魂
-
推荐技术随谈
-
这是我读过写得最好的【秒杀系统架构】分析与实战!
-
如果这篇文章说不清 epoll 的本质,那就过来掐死我吧!
-
最完整的 Markdown 基础教程
-
番外篇:Lucene 索引流程与倒排索引实现
-
Lucene 倒排索引原理探秘 (2)
-
Lucene 倒排索引原理探秘 (1)
-
推荐系统:石器与青铜时代
-
快手 HBase 在千亿级用户特征数据分析中的应用与实践
-
数据老是错误,不知道为什么
-
怎么写代码呢
-
学习代码写作怎么写
-
学习数据代码
-
深度学习在 360 搜索广告 NLP 任务中的应用
-
消息中间件—RocketMQ 消息存储(二)
-
消息中间件—RocketMQ 消息存储(一)
-
消息中间件—RocketMQ 消息消费(三)(消息消费重试)
-
消息中间件—RocketMQ 消息消费(二)(push 模式实现)
-
消息中间件—RocketMQ 消息消费(一)
-
消息中间件—RocketMQ 消息发送
-
消息中间件—RocketMQ 的 RPC 通信(二)
-
消息中间件—RocketMQ 的 RPC 通信(一)
-
阿里零售通智能导购推荐技术实践
-
“看一看”推荐模型揭秘!微信团队提出实时 Look-alike 算法,解决推荐系统多样性问题
-
关于机器学习归一化
-
网易新闻推荐:深度学习排序系统及模型
-
贝壳找房一镜到底:FM 们的原理及在贝壳搜索的实践
-
淘宝从几百到千万级并发的十四次架构演进之路!
-
分布式追踪系统概述及主流开源系统对比
-
系统架构系列(四):业务架构实战下篇
-
系统架构系列 (三):业务架构实战上篇
-
系统架构系列 (二):应对这一概念的方法
-
系统架构系列(一):如何用公式定义该概念?
-
写给开发者的谷歌技术面试终极通关指南
-
流式数据处理在百度数据工厂的应用与实践
-
一文读懂深度学习:从神经元到 BERT
-
基于内容的推荐算法
-
Embedding 技术在民宿推荐中的应用
-
XLNet : 运行机制及和 Bert 的异同比较
-
深度学习在 Airbnb 中的探索与应用
-
【贝壳智搜】标签:月老手中那一根根红线
-
Xavier 论文疑惑(论文标题:Understanding the difficulty of training deep feedforward neural networks)
-
TCP 报文格式高清图
-
从 Word Embedding 到 Bert 模型—自然语言处理中的预训练技术发展史
-
Bert 时代的创新(应用篇):Bert 在 NLP 各领域的应用进展
-
Netflix 推荐系统模型的快速线上评估方法——Interleaving
-
【真实生产案例】消息中间件如何处理消费失败的消息?
-
YC 中国创始人陆奇:人工智能时代,芯片和底层软件基本都要重做
-
从 MySQL 高可用架构看高可用架构设计
-
abtest- 数据分析 - 假设检验基础
-
程序员面试最常见问题 TOP 48
-
abtest 那些事儿(下)—数据跟踪和效果评估
-
list1 与 list2 求交集的方法总结!
-
当你打开天猫的那一刻,推荐系统做了哪些工作?
-
高并发架构消息队列面试题解析
-
Embedding 在深度推荐系统中的 3 大应用方向
-
使用 ElasticSearch 的 44 条建议
-
Elasticsearch 技术分析(七): Elasticsearch 的性能优化
-
适合程序员用的笔记本电脑
-
马蜂窝 ABTest 多层分流系统的设计与实现
-
ES 查询性能调优实践,亿级数据查询毫秒级返回
-
小米移动搜索中的 AI 技术
-
LSTM 原理与实践,原来如此简单
-
基于 “ 滴滴 KDD 2018 论文:基于强化学习技术的智能派单模型 ” 再演绎
-
阿里妈妈:电商预估模型的发展与挑战
-
Attention in RNN
-
详解 Transformer (Attention Is All You Need)
-
SVM 优化出来支持向量点的不等式约束不等于 1 是为什么?
-
机器学习:K 折交叉验证的问题
-
滴滴基于 ElasticSearch 的一站式搜索中台实践
-
快手万亿级别 Kafka 集群应用实践与技术演进之路
-
微软 AB/Testing EXP 实验管理平台
-
揭开 YouTube 深度推荐系统模型 Serving 之谜
-
深度学习中不得不学的 Graph Embedding 方法
-
谷歌、阿里、微软等 10 大深度学习 CTR 模型最全演化图谱【推荐、广告、搜索领域】
-
FTRL 公式推导
-
个性化推荐技术
-
分类模型与排序模型在推荐系统中的异同分析
-
阿里巴巴复杂搜索系统的可靠性优化之路
-
从 FFM 到 DeepFFM,推荐排序模型到底哪家强?
-
在 faster-RCNN 中,最后一层输出的 bbox_pred 是什么
-
有赞百亿级日志系统架构设计
-
打造工业级推荐系统(一):推荐算法工程师的成长之道
-
面试官:如果让你设计一个消息中间件,如何将其网络通信性能优化 10 倍以上?【石杉的架构笔记】
-
机器学习与深度学习常见面试题(上)
-
ABtest 和假设检验、流量分配
-
【三. 推荐系统的必备要素 -2】ABtest 框架
-
复旦邱锡鹏教授公布《神经网络与深度学习》,中文免费下载
-
携程金融大数据风控算法实践
-
拯救 996 的配方
-
【一. 概述 -2】什么样的产品推荐效果明显
-
【一. 概述 -1】推荐系统简介
-
万字长文解读电商搜索——如何让你买得又快又好
-
【搜狐】新闻推荐系统的 CTR 预估模型
-
阿里妈妈新突破:深度树匹配如何扛住千万级推荐系统压力
-
计算广告中主要模块、策略及其场景(上篇)
-
有赞订单搜索 AKF 架构演进之路
-
独家解读 | 滴滴机器学习平台架构演进之路
-
前深度学习时代 CTR 预估模型的演化之路
-
知其然,知其所以然:基于多任务学习的可解释推荐系统
-
[NAACL19] 一个更好更快更强的序列标注成分句法分析器
-
一直播千万量级用户推荐系统设计之路
-
知识图谱 |298 万条三元组生成方法 (一)
-
AI 下一个拐点,图神经网络带来哪些机遇?
-
人脸识别如何快速工作
-
如何强化数据集中某个特征的影响?
-
强化学习系列二——应用 AlphaGo Zero 思路优化搜索排序
-
【58 同城】中文分词技术深度学习篇
-
一图胜千言: 解读阿里的 Deep Image CTR Model
-
推荐系统召回四模型之二:沉重的 FFM 模型
-
Embedding 从入门到专家必读的十篇论文
-
深度 CTR 预估模型中的特征自动组合机制演化简史
-
详解 Airbnb 之深度学习在搜索业务的探索
-
万字长文带你解读 NLP 深度学习的各类模型
-
基于深度强化学习的新闻推荐模型 DRN
-
基于 Tensorflow 高阶 API 构建大规模分布式深度学习模型系列: 开篇
-
【贝壳找房】贝壳搜索平台实时流总体架构设计
-
【贝壳网】贝壳搜索为什么能知道你想住哪?
-
百度中文纠错技术
-
版本控制工具——Git 常用操作
-
【贝壳网】ElasticSearch 相关性计算原理及实践
-
【贝壳网】Elasticsearch 在贝壳搜索的部署实践
-
【贝壳找房】读“懂”用户找房需求:贝壳语义解析技术实践
-
【贝壳网】两种简单有效的标签选择方法
-
回顾 Facebook 经典 CTR 预估模型
-
主流 CTR 预估模型的演化及对比
-
推荐系统召回四模型之:全能的 FM 模型
-
自然语言处理基础:上下文词表征入门解读
-
为什么已有 Elasticsearch,我们还要重造实时分析引擎 AresDB?
-
NLP 新秀 : BERT 的优雅解读
-
详解 Embeddings at Alibaba(KDD 2018)
-
前员工揭内幕:10 年了,为何谷歌还搞不定知识图谱?
-
人机交互式机器翻译研究与应用
-
独家揭秘:微博深度学习平台如何支撑 4 亿用户愉快吃瓜?
-
爱奇艺短视频软色情识别技术解析
-
卷积有多少种?一文读懂深度学习中的各种卷积
-
深度长文:中文分词的十年回顾
-
机器学习中如何处理不平衡数据?
-
【58 同城】语言模型及其应用
-
测试机器学习降维之线性判别模型 (LDA)
-
GBDT+LR 算法解析及 Python 实现
-
网易杭研 分享 图数据库基础
-
用 Flink 取代 Spark Streaming,知乎实时数仓架构演进
-
国美 11·11:大促场景下的国美智能推荐系统演进之路
-
58 精准推送实践
-
《美团机器学习实践》—— 思维导图
-
「回顾」强化学习:原理与应用
-
详解 GAN 的谱归一化(Spectral Normalization)
-
「回顾」机器学习在反欺诈中应用
-
滴滴出行基于 RocketMQ 构建企业级消息队列服务的实践
-
一文让你彻底理解准确率,精准率,召回率,真正率,假正率,ROC/AUC
-
HBase 写吞吐场景资源消耗量化分析及优化
-
Flink 在有赞实时计算的实践
-
语义分割江湖的那些事儿——从旷视说起
-
「回顾」百度智能写作如何通过人工智能技术为媒体内容创作赋能?
-
58 技术沙龙——云搜 知乎 58 同城 搜索架构
-
「回顾」基于金融智能风控的实时指标处理技术体系
-
「回顾」阿里妈妈:定向广告新一代点击率预估主模型——深度兴趣演化网络
-
深入剖析 Netty 源码设计(二)——BIO NIO AIO Reactor 模式到底干了啥
-
「机器学习基础与趋势」系列丛书最新成员:140 页《深度强化学习入门》发布
-
毕玄:我在阿里的十年技术感悟
-
使用 Pytorch 实现 skip-gram 的 word2vec
-
「回顾」蚂蚁数据分析平台的演进及数据分析方法的应用
-
「回顾」深度学习新技术在搜狗搜索广告中的深化应用
-
Google 重叠实验框架:更多,更好,更快地实验
-
58 招聘推荐系统介绍——AB 实验框架
-
深入剖析 Netty 源码设计(一)——深入理解 select poll epoll 机制
-
从 KDD 2018 Best Paper 看 Airbnb 实时搜索排序中的 Embedding 技巧
-
中文分词技术及在 58 搜索的实践
-
58 搜索列表页连接效率优化实践
-
「回顾」58 同城 综合排序框架 连接效率优化实践
-
「行知」镶嵌在互联网技术上的明珠:漫谈深度学习时代点击率预估技术进展
-
推荐系统遇上深度学习 (二十九)-- 协同记忆网络理论及实践
-
推荐系统遇上深度学习 (二十八)-- 知识图谱与推荐系统结合之 MKR 模型原理及实现
-
推荐系统遇上深度学习 (二十七)-- 知识图谱与推荐系统结合之 RippleNet 模型原理及实现
-
推荐系统遇上深度学习 (二十六)-- 知识图谱与推荐系统结合之 DKN 模型原理及实现
-
推荐系统遇上深度学习 (二十五)-- 当知识图谱遇上个性化推荐
-
推荐系统遇上深度学习 (二十四)-- 深度兴趣进化网络 DIEN 原理及实战!
-
推荐系统遇上深度学习 (二十三)-- 大一统信息检索模型 IRGAN 在推荐领域的应用
-
推荐系统遇上深度学习 (二十二)–DeepFM 升级版 XDeepFM 模型强势来袭!
-
推荐系统遇上深度学习 (二十一)-- 阶段性回顾
-
推荐系统遇上深度学习 (二十)-- 贝叶斯个性化排序(BPR) 算法原理及实战
-
推荐系统遇上深度学习 (十九)-- 探秘阿里之完整空间多任务模型 ESSM
-
推荐系统遇上深度学习 (十八)-- 探秘阿里之深度兴趣网络(DIN) 浅析及实现
-
推荐系统遇上深度学习 (十七)-- 探秘阿里之 MLR 算法浅析及实现
-
推荐系统遇上深度学习 (十六)-- 详解推荐系统中的常用评测指标
-
推荐系统遇上深度学习 (十五)-- 强化学习在京东推荐中的探索
-
推荐系统遇上深度学习 (十四)–《DRN:A Deep Reinforcement Learning Framework for News Recommendation》
-
推荐系统遇上深度学习 (十三)–linUCB 方法浅析及实现
-
推荐系统遇上深度学习 (十二)-- 推荐系统中的 EE 问题及基本 Bandit 算法
-
大众点评搜索基于知识图谱的深度学习排序实践
-
推荐系统遇上深度学习 (十)–GBDT+LR 融合方案实战
-
推荐系统遇上深度学习 (八)–AFM 模型理论和实践
-
推荐系统遇上深度学习 (七)–NFM 模型理论和实践
-
推荐系统遇上深度学习 (六)–PNN 模型理论和实践
-
推荐系统遇上深度学习 (五)–Deep&Cross Network 模型理论和实践
-
推荐系统遇上深度学习 (四)-- 多值离散特征的 embedding 解决方案
-
推荐系统遇上深度学习 (三)–DeepFM 模型理论和实践
-
深度学习时代的图模型
-
推荐系统遇上深度学习 (二)–FFM 模型理论和实践
-
推荐系统遇上深度学习 (一)–FM 模型理论和实践
-
BERT 大火却不懂 Transformer?读这一篇就够了
-
图解当前最强语言模型 BERT:NLP 是如何攻克迁移学习的?
-
AutoML 在推荐系统中的应用
-
一朝爆发?解读知识图谱和图数据库的 2018
-
工作中组内遇到的 elasticsearch 使用上的踩坑总结
-
深度好文:2018 年 NLP 应用和商业化调查报告
-
深度学习在金融文本情感分类中的应用
-
深入剖析 ReentrantLock 公平锁与非公平锁源码实现
-
算法工程师必须要知道的面试技能雷达图
-
美团深度学习在搜索业务中的探索与实践
-
回顾·搜索引擎算法体系简介——排序和意图篇
-
基于知识图谱的问答系统入门—NLPCC2016KBQA 数据集
-
【干货】Kafka 数据可靠性深度解读
-
回顾·CTR 预估系统实践
-
「回顾」强化学习在自然语言处理中的应用
-
Spark 宽依赖 窄依赖 Job Stage Executor Task 总结
-
Spark 性能调优总结
-
Scala 下划线 (_) 用法汇总
-
【干货】Spark 之性能优化
-
《搜索与推荐中的深度学习匹配》之推荐篇
-
《搜索与推荐中的深度学习匹配》之搜索篇
-
「回顾」Yoo 视频底层页推荐系统 - 从 0 到 1 的实践
-
吴恩达、Yann LeCun 等大佬回顾预测 2019 年 AI 发展
-
蚂蚁金服核心技术:百亿特征实时推荐算法揭秘
-
Numerical Coordinate Regression= 高斯热图 VS 坐标回归
-
「回顾」AI 如何让广告投放进入“自动驾驶”?
-
随机变量 - 统计学核心方法及其应用
-
简单聊聊特征工程
-
近期知识图谱顶会论文推荐,你都读过哪几篇?
-
半监督深度学习小结:类协同训练和一致性正则化
-
「回顾」机器学习与推荐系统实践
-
全文搜索引擎,选 ElasticSearch 还是 Solr?
-
NLP-BERT 谷歌自然语言处理模型:BERT- 基于 pytorch
-
罗振宇 2018“时间的朋友”跨年演讲未删减全文
-
机器学习与数据科学决策树指南
-
「回顾」旅游知识图谱的构建和应用
-
「回顾」知乎推荐页 Ranking 经验分享
-
计算广告论文及资料 && 推荐系统论文及资料 && 基于 Spark 的 CTR 模型资料
-
万物皆 Embedding,从经典的 word2vec 到深度学习基本操作 item2vec
-
【下】YouTube 深度学习推荐系统的十大工程问题
-
【上】重读 Youtube 深度学习推荐系统论文,字字珠玑,惊为神文
-
人脸分析:数据时代的“面像学” 一文读懂用户画像的前世今生
-
「回顾」爱奇艺搜索排序模型迭代之路
-
「回顾」NLP 在网络文学领域的应用
-
清华大学图神经网络综述:模型与应用
-
Netty 学习和进阶策略
-
Flink 实战: 结合 Kafka 构建端到端的 Exactly-Once 处理程序
-
Apache Flink 端到端(end-to-end)Exactly-Once 特性概览 (翻译)
-
《提问的智慧》中文版翻译
-
NIPS2018 | 腾讯 AI Lab 入选 20 篇论文,含 2 篇 Spotlight
-
【翻译】Redis 存储揭秘
-
大话 Select、Poll、Epoll 机制
-
空间数据索引 RTree 完全解析及 Java 实现
-
建了个机器学习与深度学习的微信群
-
【美团】LruCache 在美团 DSP 系统中的应用演进
-
【美团】深入浅出排序学习:写给程序员的算法系统开发实践
-
基于 Flink 的严选实时数仓实践
-
百页机器学习书
-
基于对象特征的推荐系统
-
「回顾」让机器读懂人类:揭秘机器阅读理解技术及应用
-
“IT 男等级”对照表|找找你在哪?
-
两位拯救谷歌的超级工程师的故事:计算机界最好的结对编程榜样
-
机器学习在美团配送系统的实践:用技术还原真实世界
-
[译] 支持向量机(SVM)教程
-
YouTube 推荐系统改进之路
-
「干货」YouTube 基于深度神经网络推荐系统剖析
-
实时检索 6700 亿条推文,细谈 Twitter 搜索引擎的演进历程
-
【 DataFunTalk】HBase RowKey 与索引设计
-
架构拆分原理解析
-
阿里开源深度学习框架 XDL,面向广告、推荐、搜索场景
-
我收到了斯坦福、UCL、CMU、NYU、UW 的博士 offer,这是我的经验
-
BigGAN 论文解读
-
微软专家眼中个性化推荐系统的 5 大研究趋势
-
理解五个基本概念,让你更像机器学习专家
-
阿里巴巴搜索引擎平台 Ha3 揭秘
-
Java 编程方法论之响应式编程系列视频
-
每日生产万亿消息数据入库,腾讯如何突破大数据分析架构瓶颈
-
这可能是人工智能、机器学习和大数据领域覆盖最全的一份速查表
-
菜鸟,下一代分布式体系架构的设计理念
-
除了抖音和头条,字节跳动的 AI 实力有多强?
-
阿里妈妈大规模在线分层实验实践
-
深度学习在 Airbnb 大规模搜索排名上的实战经验
-
51 信用卡的个性化推荐体系
-
【杉枫】科技与人文
-
【杉枫】架构抽象化设计
-
机器学习人工智能学习资源导航
-
这里好冷清
-
苏宁 11.11:一种基于神经网络的智能商品税分类系统
-
有赞搜索引擎从 0 到 1 技术解析
-
【必读!!】人工智能社区公告!!
-
苏宁 11.11 :苏宁大数据离线任务开发调度平台实践
-
苏宁 11.11:苏宁易购订单搜索系统架构及实现
-
苏宁 11.11:搜索引擎 Solr 在苏宁易购商品评价系统中的应用
-
美团大脑:知识图谱的建模方法及其应用
-
【干货】搜索引擎技术资料整理
-
2143 亿!2018 年天猫“双 11”成交总额是这样预测的
-
一文看懂智能合约的现状与未来
-
“搜你所想”之用户搜索意图识别
-
【杉枫】推荐引擎异步架构设计
-
苏宁 11.11:仓库内多 AGV 协作的全局路径规划算法研究
-
Kafka 设计解析(一):Kafka 背景及架构介绍
-
「回顾」饿了么推荐算法演进及在线学习实践
-
Lucene 6 数值索引以及空间索引方案
-
互联网架构,究竟为啥要做服务化?
-
Lucene 倒排索引缓冲池的细节
-
【译】写给计算机专业毕业生的 22 条宝贵建议
-
深度学习在序列化推荐中的应用 (1)-GRU4REC 以及扩展
-
实时翻译的发动机:矢量语义(斯坦福大学课程解读)
-
骚操作!电影接吻镜头次数的算法实现
-
响应式编程 Rxjava 书籍视频教程
-
机器学习,模式识别,数据挖掘常用学习资源链接
-
美团深度学习系统的工程实践
-
AI 大师丨 Yoshua Bengio:纯粹与理想,深度学习的 30 年
-
Apache 顶级开源项目是怎样炼成的?国内开发者应该如何借鉴?
-
大数据凉了?No,流式计算浪潮才刚刚开始!
-
分布式高性能 redis 集群线上常见问题
-
58 沈剑 - 分布式事务,原来可以这么玩?
-
饿了么外卖推荐算法中有哪些机制与手段?
-
有赞搜索系统的架构演进
-
有赞搜索系统的技术内幕
-
基于 TensorFlow Serving 的深度学习在线预估
-
建了一个机器学习微信群
-
阿里巴巴为什么选择 Apache Flink?Flink——下一代大数据处理系统
-
超参数搜索不够高效?这几大策略了解一下
-
Lucene 查询原理
-
Lucene 解析 - 基本概念
-
Elasticsearch 之 commit point | Segment | refresh | flush 索引分片内部原理
-
码农晋升为技术管理者后,痛并快乐着的纠结内心
-
秋招报告:2019 届互联网校招薪资出炉,90 后社招被薪酬倒挂?
-
互联网思维——真正的高手,是如何判断趋势的?
-
一点做用户画像的人生经验:ID 强打通
-
如何理解区块链的共识算法?
-
推荐系统顶会 RecSys2018 最佳论文奖出炉!因果嵌入推荐与用户研究成为焦点
-
程序员进阶必读金句
-
腾讯内容平台系统的架构实践
-
58 同城推荐系统架构设计与实现
-
互联网智能广告系统简易流程与架构
-
【阿里】电商搜索算法技术的演进
-
互联网智能广告系统简易流程与架构 |
-
如何看待「机器学习不需要数学,很多算法封装好了,调个包就行」这种说法?
-
老程序员如何避免沦落出局?
-
一次生产系统 Full GC 问题分析与排查总结
-
推荐系统遇上深度学习 (十一)-- 神经协同过滤 NCF 原理及实战
-
5 种方法求解 TopK!面试不要再问我 Topk 了~
-
【转自知乎】当下(2018 年)腾讯的技术建设是否处于落后同体量公司的状态?
-
”大脑“爆发背后是 50 年互联网架构重大变革
-
用户画像番外篇之随笔三则
-
互联网公司面试官应该如何去面试一个人?
-
机器学习论文笔记—如何利用高效的搜索算法来搜索网络的拓扑结构
-
北邮硕士、前百度工程师:能进大厂,就不用读研究生了!
-
微服务架构之事件驱动架构
-
回顾·如何构建知识图谱?
-
Java GC 调优怎么做?
-
【AIQ】梁宁万字长文:美团的破局与开局
-
美团上市,开盘涨 5.7%,市值超京东!与阿里的交锋再升级
-
阿里巴巴达摩院成立一年,都做了些什么?
-
洋码头搜索应用架构
-
洋码头推荐系统重排算法实践
-
洋码头推荐系统技术架构
-
短视频如何做到千人千面?FM+GBM 排序模型深度解析
-
用户画像番外篇之用户活跃 / 用户价值度分析
-
想读 AI 研究生?你发过几篇 NIPS 一作?
-
一文剖析区块链现状:丛林法则下的胜者
-
10 秒抓人眼球的“技术类简历”怎么写?
-
应用于实时视频通信的深度学习算法研究
-
机器学习特征工程全过程
-
不到 10 个提升逼格的 Redis 命令
-
MySQL 不为人知的主键与唯一索引约束
-
回顾·云上 HBase 冷热分离实践
-
冗余数据一致性,到底如何保证?
-
用机器学习怎样鉴别不可描述的网站
-
“搞机器学习没前途” 2018 算法岗现状
-
深入浅出搜索架构引擎、方案与细节(上)
-
搜索引擎倒排索引的设计与实践
-
北京后厂村折叠:月薪追赶五万,生活低于五千
-
旷视、北邮等国内团队包揽六项第一,COCO&Mapillary 联合挑战赛结果公布
-
机器学习比赛大杀器 ---- 模型融合 (stacking & blending)
-
读书笔记《小群效应》
-
推荐系统遇上深度学习 (九)-- 评价指标 AUC 原理及实践
-
推荐效果线上评测:AB 测试平台的设计与实现【全】
-
【十大经典数据挖掘算法】PageRank
-
NIPS 2018 丨解读微软亚洲研究院 10 篇入选论文
-
搜狐新闻推荐算法原理 | “呈现给你的,都是你所关心的”
-
强化学习在新闻推荐中的应用
-
资源 | skymind.ai 发布最新机器学习 人工智能开源数据集,
-
五八同城智能客服系统“帮帮”技术揭秘
-
微博广告分层实验平台 (Faraday) 架构实践
-
中文 NLP 用什么?中文自然语言处理的完整机器处理流程
-
互联网广告 CTR 预估新算法:基于神经网络的 DeepFM 原理解读
-
用户画像—计算用户偏好标签及数据指标与表结构设计
-
十年技术老兵总结的自我修炼之路
-
海量日志实时收集系统架构设计与 go 语言实现
-
25 个机器学习开放性面试题,没有明确答案
-
用户画像之标签权重算法
-
用户画像——标签聚类
-
用户画像——数据质量管理
-
回顾·知识图谱在贝壳找房的从 0 到 1 实践
-
Google 首席决策师告诉你数据科学究竟是什么?
-
通俗解释协方差与相关系数
-
AI 的思维
-
如何构建用户画像—打用户行为标签
-
比低情商更可怕的,是一个人的固执
-
科学匠人 | 微软亚洲研究院 陈薇 用数学逻辑来优化工作和人生
-
AdaBoost 算法详解 原理 推导及应用
-
独家揭秘!2.5 亿用户的美团智能推荐平台是如何构建的?
-
我在机器学习踩过的坑,现在告诉你怎么跳过去
-
资本的钩子
-
观点 | 机器学习 =「新瓶装旧酒」的数据统计?No!
-
褚时健:发快财的时代过去了,年轻人要先做好这些事
-
分布式事务的实现原理 2pc 3pc XA 事务
-
大神总结的机器学习的数学基础,掌握这些足够
-
KDD 2018 | 推荐系统特征构建新进展:极深因子分解机模型
-
写在博士旅程之前——前大疆创新技术总监杨硕
-
感知机 +SVM+LR
-
一位 49 岁的程序员、持续创业者教会我的宝贵经验
-
马云:如果事情都准备好了再做,那我就不会成功了
-
Google 十年,我的认知被彻底颠覆
-
回顾·HBase 在贝壳找房的实践经验
-
神马搜索技术演进之路
-
如何将知识图谱特征学习应用到推荐系统?
-
AIQ | 十多年前的那些 IT 工程师都去哪里了?
-
租客的至暗时刻:昨天买不起房,今天租不起房
-
资源 | Python 技巧 101:这 17 个骚操作你都 Ok 吗
-
IT 公司 全能 CTO 的必备要素
-
被“伪兴趣”毁掉的年轻人
-
机器学习第三篇——分类决策树
-
机器学习第二篇——逻辑回归
-
美团在 O2O 场景下的广告营销
-
美团 | 写给工程师的十条精进原则
-
AIQ | 诺奖得主点评:人工智能其实就是统计学,用了一个很华丽的辞藻
-
推荐引擎中规则以及策略
-
AIQ | 陆奇去向最终敲定!带领 YC 孵化器进军中国
-
聊聊阿里社招面试,谈谈“野生”Java 程序员学习的道路
-
一文解说 Scala Trait 所有用法
-
Scala 面向对象编程之类和对象
-
Spark 三种提交模式:Standalone | yarn-client | yarn-cluster
-
【干货】机器学习中的五种回归模型及其优缺点
-
SparkSQL 大数据实战:shuffle hash join、broadcast hash join 以及 sort merge join 三种 join 大揭秘
-
【区块链】一文看懂区块链【详解区块链】
-
观点 | 博士离开学术界算不算失败?牛津大学博士有话要说
-
春风十里不如你
-
深度学习必备的几款流行网络与数据集
-
为什么程序员一言不合就重构代码?
-
KDD2018 | 电商搜索场景中的强化排序学习:形式化、理论分析以及应用
-
我们该如何学习机器学习中的数学
-
拼多多为什么崛起?这是目前解读最深刻的一篇
-
腾讯联合创始人张志东:发光的人要能拿得起,放得下
-
VIPKID 一二面面经 (算法工程师)
-
一条数据的 HBase 之旅,简明 HBase 入门教程 -Flush 与 Compaction
-
一条数据的 HBase 之旅,简明 HBase 入门教程 -Write 全流程
-
一条数据的 HBase 之旅,简明 HBase 入门教程 - 开篇
-
30 张地图看懂世界格局,用大数据说话
-
面向机器学习:数据平台的设计与搭建
-
雷军最不待见,刘强东深恶痛绝,宁愿解散团队,这 7 类人也绝不能留
-
刷爆朋友圈的高赞演讲:为什么最棒的员工往往没有完美的简历?
-
神经网络的激活函数总结
-
赵大伟 | 区块链通证经济的本质与落地路径
-
雷军:小米创业 8 年内部影像首次公开 看完我心里边都是一团火
-
雷军,黄峥,王兴,互联网 2018 年的夏天
-
拼多多上市,80 后 CEO 创业 3 年身价 800 亿,背后这 3 个字最值得深思
-
基于内容的图像检索技术综述 传统经典方法
-
AIQ - 百度深度学习图像识别决赛代码分享 (OCR)
-
AIQ - 区块链 | 浅谈区块链技术与阿里云的探索实践
-
工业数据采集方法深度学习
-
AIQ - AI | 快手 AI 技术副总裁郑文:为什么说 AI 是短视频平台的核心能力
-
AIQ- 深度 | 碧桂园的鸡血、狗血和人血
-
随机森林概述
-
关于感受野的总结
-
AIQ - 区块链 | AI+ 区块链深度解析,美国 VC 大咖:这是未来十年的趋势 | 33 页 PPT
-
流形学习概述
-
AIQ - 深度 | 网易云音乐王诗沐:我们是如何四年时间做到 4 亿用户的
-
AIQ - AI | 32 篇论文、7 大事业群,这是腾讯在斯德哥尔摩的 AI 之夜
-
罗辑思维 CEO 脱不花:关于工作和成长,这是我的 121 条具体建议
-
AIQ - 深度 | 中关村风云 40 年
-
基于深度负相关学习的人群计数方法
-
AIQ | Elasticsearch 史上最全最常用工具清单
-
AIQ -【干货】模型验证的常用“武器”—ROC 和 AUC
-
AIQ - deeplearning.ai 全套吴恩达老师的深度学习课程笔记及资源在线阅读
-
人脸检测算法之 S3FD
-
AIQ - 有赞的面试经历,被虐的有点惨
-
AIQ - 从损失函数的角度详解机器学习算法之逻辑回归
-
AIQ - 架构 | 优秀架构师必须掌握的架构思维
-
AIQ - 个人发展和职业规划的理论性叙述
-
理解计算 从根号 2 到 AlphaGo 第 3 季神经网络的数学模型
-
AIQ - 学界 | SIGIR 2018 最佳论文:基于流行度推荐系统有效性的概率分析
-
AIQ - Solr 与 ES(ElasticSearch)的对比
-
AIQ - 机器学习近年来之怪现状
-
怎样成为一名优秀的算法工程师
-
AIQ - 深度 | 学会为自己工作
-
AIQ - 干货 | 1400 篇机器学习的论文中,这 10 篇是最棒的!
-
AIQ - 干货 | Elasticsearch 趋势科技实战分享笔记
-
AIQ - 深度 | 市值 465 亿美元的小米八年往事
-
AIQ - | NLP 领域的 ImageNet 时代:词嵌入已死,语言模型当立
-
AIQ - 区块链 | 国内区块链项目技术全面解析
-
机器学习算法地图
-
反向传播算法推导 - 全连接神经网络
-
AIQ - NLP | CNN 也能用于 NLP 任务,一文简述文本分类任务的 7 个模型
-
AIQ - 语音识别 | 微软亚研自动语法纠错系统达到人类水平
-
AIQ - 人工智能 | 人工智能军备竞赛:一文尽览全球主要国家 AI 战略
-
AIQ - 架构 | 软件服务架构的一些感悟
-
AIQ - 人工智能 | “照骗”难逃 Adobe 的火眼金睛——用机器学习让 P 图无所遁形
-
AIQ - 架构 | 知乎服务化的实践与思考
-
AIQ - 深度 | 知乎高赞:久居一线城市都有什么错觉?
-
发布 AI 芯片昆仑和百度大脑 3.0、L4 自动驾驶巴士量产下线,这是百度 All in AI 一年后的最新答卷
-
AIQ - 架构 | SpringBoot 开发案例从 0 到 1 构建分布式秒杀系统
-
AIQ - 架构 | 京东推荐系统架构揭秘:大数据时代下的智能化改造
-
AIQ - 架构 | Java 程序员该如何突破瓶颈,阿里小马哥十年架构师经验之谈(文末送书)
-
AIQ - 架构 | Kafka 服务端 网络层 reactor 架构
-
AIQ - 干货 | 从零到一学习知识图谱的技术与应用
-
AIQ - 基础 | 深度学习之基础知识详解
-
AIQ - 深度 | 排队离婚、落户、上天台,所有人都在赌明天
-
深度神经网络(DNN)模型与前向传播算法
-
深度神经网络(DNN)反向传播算法 (BP)
-
深度神经网络(DNN)损失函数和激活函数的选择
-
AI 发展越来越快, 十年或二十年后哪些工作不会被替代?
-
到底该不该去创业公司?
-
真正的高手都是悄无声息的摆渡人
-
棚改 - 三四线楼市再无未来
-
你毕业几年了,混成什么鬼样子了?看看这些年轻人怎么说
-
知乎高赞:家里在一二线城市有很多套房是怎么的一种体验?答案太颠覆
-
美团点评 - 深度学习在计算机视觉中的应用
-
AIQ 干货 | 蚂蚁金服科技一篇文章带你学习分布式事务
-
深度学习在美团搜索广告排序的应用实践是怎么样的?
-
AIQ - 为什么要使用交叉验证?
-
AIQ|【供应链】十张图帮你理解供应链 IT 名词!(上篇)
-
AIQ|【学界】吴恩达 Deep Learning Specialization 课程刷后感(附课程视频,字幕,全套 PPT,作业)
-
AIQ|【供应链】供应链、物流、采购到底有什么区别?
-
AIQ |【供应链】2018 年中国智慧物流行业市场前景研究报告
-
AIQ | 阿里是如何应对超大规模集群资源管理挑战的?
-
AIQ | 优秀的算法工程师都是不用深度学习的
-
AIQ | Coursera 吴恩达深度学习教程中文笔记最新版
-
AIQ | 吴恩达课程从未失望,斯坦福 CS230 深度学习课程全套资料放出(附下载)
-
AIQ | NLP 算法工程师的学习、成长和实战经验
-
AIQ| 深醒首席科学家张钹院士:深度学习优势与短板,中国 AI 机遇和挑战
-
AIQ| 出轨大数据新出炉,暴露一个惊人真相
-
AIQ | 44 篇论文强势进击 CVPR 2018,商汤科技的研究员都在做哪些研究?
-
AIQ | 面试经验·机器学习、深度学习、算法工程师(校招)
-
AIQ | Spark 及 Spark Streaming 核心原理及实践
-
AIQ | Spark 团队开源新作:全流程机器学习平台 MLflow
-
AIQ 教程 |「川言川语」:用神经网络 RNN 模仿特朗普的语言风格
-
AIQ | 求生之路:博士生涯的 17 条简单生存法则
-
面试了 8 家公司,社招机器学习面试题
-
人工智能入门书单推荐,学习 AI 的请收藏好(附 PDF 下载)
-
互联网降维打击是一个什么概念?
-
今日头条算法原理(全文)
-
机器学习新手必须掌握的十大算法指南
-
近期 GitHub 上最热门的开源项目(附链接)
-
深度 | 可视化 LSTM 网络:探索「记忆」的形成