【数据挖掘实验】决策树算法之C5.0方法

该实验旨在通过Clementine软件掌握C5.0决策树方法,利用统御、武力等变量预测'三国志1'和'三国志2'人物的身份,分析预测准确性和差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、实验目的与要求:

1、掌握决策树C5.0方法的Clementine软件实现。
2、由决策树给出规则集及其新样本预测。

二、实验原理:

C4.5算法及其C5.0算法的基本步骤,优缺点。

三、实验方案设计:

在这里插入图片描述

四、测试数据与实验结果

测试数据1:针对‘三国志1’的数据进行分析,由统御、武力、智慧、政治、魅力、忠诚为输入变量,身份为输出变量,建立决策树。完成下列问题
(1)由规则集‘三国志1’对每一个人物进行身份的预测,分析预测值和真实值的差异;
(2)由生成的规则集对‘三国志2’每一个人物进行身份预测,并进行预测值和真实值的对比。
实验结果:
(1)
在这里插入图片描述
在这里插入图片描述
(2)
在这里插入图片描述

五、实验素材

在我的资源中

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值