题意
这一晚,TT 做了个美梦!
在梦中,TT 的愿望成真了,他成为了喵星的统领!喵星上有 N 个商业城市,编号 1 ~ N,其中 1 号城市是 TT 所在的城市,即首都。
喵星上共有 M 条有向道路供商业城市相互往来。但是随着喵星商业的日渐繁荣,有些道路变得非常拥挤。正在 TT 为之苦恼之时,他的魔法小猫咪提出了一个解决方案!TT 欣然接受并针对该方案颁布了一项新的政策。
具体政策如下:对每一个商业城市标记一个正整数,表示其繁荣程度,当每一只喵沿道路从一个商业城市走到另一个商业城市时,TT 都会收取它们(目的地繁荣程度 - 出发地繁荣程度)^ 3 的税。
TT 打算测试一下这项政策是否合理,因此他想知道从首都出发,走到其他城市至少要交多少的税,如果总金额小于 3 或者无法到达请悄咪咪地打出 ‘?’。
Input
第一行输入 T,表明共有 T 组数据。(1 <= T <= 50)
对于每一组数据,第一行输入 N,表示点的个数。(1 <= N <= 200)
第二行输入 N 个整数,表示 1 ~ N 点的权值 a[i]。(0 <= a[i] <= 20)
第三行输入 M,表示有向道路的条数。(0 <= M <= 100000)
接下来 M 行,每行有两个整数 A B,表示存在一条 A 到 B 的有向道路。
接下来给出一个整数 Q,表示询问个数。(0 <= Q <= 100000)
每一次询问给出一个 P,表示求 1 号点到 P 号点的最少税费。
Output
每个询问输出一行,如果不可达或税费小于 3 则输出 ‘?’。
Sample Input
2
5
6 7 8 9 10
6
1 2
2 3
3 4
1 5
5 4
4 5
2
4
5
10
1 2 4 4 5 6 7 8 9 10
10
1 2
2 3
3 1
1 4
4 5
5 6
6 7
7 8
8 9
9 10
2
3 10
Sample Output
Case 1:
3
4
Case 2:
?
?
思路
本题考察SPFA算法判断负环,
SPFA算法判断负环:
采用队列进行遍历并进行松弛操作,类似于广度优先搜索,按照最终产生的最短路径上的边的顺序来进行松弛操作。对于图中的点,采取inq数组表示当前是否在队列中,同时要添加一个cnt数组来记录最短路径上的边数,如果边数大于或等于点数,则出现负环,此时要对此点进行搜索(广搜深搜均可),将与该点连通的点全部打上标记,表示该点收到负环影响。接着判断队列中的其他点,直到队列为空。
本题中将1号城市作为源点执行SPFA算法,将所有可达的节点均遍历完成且标记好被负环影响的点,最再按照要求进行输出,若询问到的点无法到达、被负环影响或者金额小于3,输出“?”
代码
#include<iostream>
#include<queue>
#include<cmath>
#include<cstdio>
using namespace std;
const int maxn = 1e4, inf = 1e7 , maxm=2e5;
int n, m, t, a[maxn], tot, dis[maxn], head[maxn], cnt[maxn], inq[maxn], vis[maxn];
queue<int> q;
struct node
{
int w;
int v;
int next;
}e[maxm];
void add(int u, int v, int w)
{
e[++tot].v = v;
e[tot].w = w;
e[tot].next = head[u];
head[u] = tot;
}
void dfs(int u)
{
vis[u] = 1;
for (int i = head[u]; i; i = e[i].next)
if (!vis[e[i].v])
{
dfs(e[i].v);
}
}
void spfa()
{
cnt[1] = 0;
dis[1] = 0;
q.push(1);
inq[1] = 1;
while (q.size())
{
int u = q.front();
q.pop();
inq[u] = 0;
for (int i = head[u]; i; i = e[i].next)
if (dis[e[i].v] > dis[u] + e[i].w)
{
cnt[e[i].v] = cnt[u] + 1;
dis[e[i].v] = dis[u] + e[i].w;
if (cnt[e[i].v] >= n)
{
dfs(e[i].v);
continue;
}
if (!inq[e[i].v])
{
q.push(e[i].v);
inq[e[i].v] = 1;
}
}
}
}
int main()
{
int t;
cin >> t;
for (int k = 1; k <= t; k++)
{
tot = 0;
cin >> n;
for (int i = 0; i <= n; i++)
{
inq[i] = 0;
vis[i] = 0;
dis[i] = inf;
head[i] = 0;
cnt[i] = 0;
}
for (int i = 1; i <= n; i++)
cin >> a[i];
cin >> m;
for (int i = 0; i < m + 2; i++)
e[i].w = e[i].v = e[i].next = 0;
while (m--)
{
int from, to;
cin >> from >> to;
add(from, to, (int)pow(a[to] - a[from], 3));
}
spfa();
int q1;
cin >> q1;
printf("Case %d:\n", k);
while (q1--)
{
int p;
cin >> p;
if (dis[p] < 3 || vis[p] || dis[p] == inf)
cout << "?" << endl;
else
cout << dis[p] << endl;
}
}
return 0;
}