week7 作业C-TT的美梦

题意

这一晚,TT 做了个美梦!

在梦中,TT 的愿望成真了,他成为了喵星的统领!喵星上有 N 个商业城市,编号 1 ~ N,其中 1 号城市是 TT 所在的城市,即首都。

喵星上共有 M 条有向道路供商业城市相互往来。但是随着喵星商业的日渐繁荣,有些道路变得非常拥挤。正在 TT 为之苦恼之时,他的魔法小猫咪提出了一个解决方案!TT 欣然接受并针对该方案颁布了一项新的政策。

具体政策如下:对每一个商业城市标记一个正整数,表示其繁荣程度,当每一只喵沿道路从一个商业城市走到另一个商业城市时,TT 都会收取它们(目的地繁荣程度 - 出发地繁荣程度)^ 3 的税。

TT 打算测试一下这项政策是否合理,因此他想知道从首都出发,走到其他城市至少要交多少的税,如果总金额小于 3 或者无法到达请悄咪咪地打出 ‘?’。

Input

第一行输入 T,表明共有 T 组数据。(1 <= T <= 50)

对于每一组数据,第一行输入 N,表示点的个数。(1 <= N <= 200)

第二行输入 N 个整数,表示 1 ~ N 点的权值 a[i]。(0 <= a[i] <= 20)

第三行输入 M,表示有向道路的条数。(0 <= M <= 100000)

接下来 M 行,每行有两个整数 A B,表示存在一条 A 到 B 的有向道路。

接下来给出一个整数 Q,表示询问个数。(0 <= Q <= 100000)

每一次询问给出一个 P,表示求 1 号点到 P 号点的最少税费。

Output

每个询问输出一行,如果不可达或税费小于 3 则输出 ‘?’。

Sample Input

2
5
6 7 8 9 10
6
1 2
2 3
3 4
1 5
5 4
4 5
2
4
5
10
1 2 4 4 5 6 7 8 9 10
10
1 2
2 3
3 1
1 4
4 5
5 6
6 7
7 8
8 9
9 10
2
3 10

Sample Output

Case 1:
3
4
Case 2:
?
?

思路

本题考察SPFA算法判断负环,
SPFA算法判断负环:
采用队列进行遍历并进行松弛操作,类似于广度优先搜索,按照最终产生的最短路径上的边的顺序来进行松弛操作。对于图中的点,采取inq数组表示当前是否在队列中,同时要添加一个cnt数组来记录最短路径上的边数,如果边数大于或等于点数,则出现负环,此时要对此点进行搜索(广搜深搜均可),将与该点连通的点全部打上标记,表示该点收到负环影响。接着判断队列中的其他点,直到队列为空。

本题中将1号城市作为源点执行SPFA算法,将所有可达的节点均遍历完成且标记好被负环影响的点,最再按照要求进行输出,若询问到的点无法到达、被负环影响或者金额小于3,输出“?”

代码

#include<iostream>
#include<queue>
#include<cmath>
#include<cstdio>
using namespace std;
const int maxn = 1e4, inf = 1e7 , maxm=2e5;
int n, m, t, a[maxn], tot, dis[maxn], head[maxn], cnt[maxn], inq[maxn], vis[maxn];
queue<int> q;
struct node
{
	int w;
	int v;
	int next;
}e[maxm];
void add(int u, int v, int w)
{
	e[++tot].v = v;
	e[tot].w = w;
	e[tot].next = head[u];
	head[u] = tot;
}
void dfs(int u)
{
	vis[u] = 1;
	for (int i = head[u]; i; i = e[i].next)
		if (!vis[e[i].v])
		{
			dfs(e[i].v);
		}
}
void spfa()
{
	cnt[1] = 0;
	dis[1] = 0;
	q.push(1);
	inq[1] = 1;
	while (q.size())
	{
		int u = q.front();
		q.pop();
		inq[u] = 0;
		for (int i = head[u]; i; i = e[i].next)
			if (dis[e[i].v] > dis[u] + e[i].w)
			{
				cnt[e[i].v] = cnt[u] + 1;
				dis[e[i].v] = dis[u] + e[i].w;
				if (cnt[e[i].v] >= n)
				{
					dfs(e[i].v);
					continue;
				}
				if (!inq[e[i].v])
				{
					q.push(e[i].v);
					inq[e[i].v] = 1;
				}
			}
	}
}
int main()
{
	int t;
	cin >> t;
	for (int k = 1; k <= t; k++)
	{
		tot = 0;
		cin >> n;
		for (int i = 0; i <= n; i++)
		{
			inq[i] = 0;
			vis[i] = 0;
			dis[i] = inf;
			head[i] = 0;
			cnt[i] = 0;
		}
		for (int i = 1; i <= n; i++)
			cin >> a[i];
		cin >> m;
		for (int i = 0; i < m + 2; i++)
			e[i].w = e[i].v = e[i].next = 0;
		while (m--)
		{
			int from, to;
			cin >> from >> to;
			add(from, to, (int)pow(a[to] - a[from], 3));
		}
		spfa();
		int q1;
		cin >> q1;
		printf("Case %d:\n", k);
		while (q1--)
		{
			int p;
			cin >> p;
			if (dis[p] < 3 || vis[p] || dis[p] == inf)
				cout << "?" << endl;
			else
				cout << dis[p] << endl;
		}
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值