思路:先计算阶乘,再计算分式的和
利用公式:e=1/0!+1/1!+1/2!+1/3!+…
public class Qiue{
法一:递归法求阶乘
public static long factorial1(int n){
if(n1||n0)
{return 1;}
else{return nfactorial1(n-1);}
}
法二:迭代法求阶乘
public static long factorial2(int n){
int r=1;
for(int i=1;i<=n;i++){
细节//因为公式中有0的阶乘,因此条件包含=情况,你想嘛,多加了一个1,如果没有0的阶乘,条件就直接为<
r=ri;
r=r*i;
}
return r;
}
//计算自然数e
public static double caclE(int n){
double e=0;
for(int i=0;i<=n;i++){
e+=(1.0/factorial2(i));//看公式
}
return e;
}
public static void main(String[]args){
System.out.printf(“e = %f%n”,caclE(4));
}
}
用Java实现求自然对数e的值
最新推荐文章于 2021-12-23 14:37:05 发布
本文介绍了一种通过迭代法计算自然数e的有效方法,并提供了具体的Java实现代码。该方法利用了e的级数展开公式,即e等于1/0! + 1/1! + 1/2! + ...,通过计算阶乘并累加得到e的近似值。
摘要由CSDN通过智能技术生成