算法笔记:排序算法-选择排序

排序算法-选择排序

方法

假设数组有n个无序元素。
首先在 [ 0, length-1 ] 中找到最小的元素,并将该元素与数组第 0 位进行交换。
然后在 [ 1, length-1 ] 中找到最小的元素,并将该元素与数组第 1 位进行交换。

然后在 [ i, length-1 ] 中找到最小的元素,并将该元素与数组第 i 位进行交换。

最后在 [ length-1, length-1 ] 中找到最小的元素,并将该元素与数组第 length-1 位进行交换。

实现

@Override
  public void sort(int[] arr) {
    for (int i = 0; i < arr.length; i++) {
      int minLoc = i;
      for (int j = i; j < arr.length; j++) {
        if (arr[minLoc] > arr[j])
          minLoc = j;
      }
      // swap
      int temp = arr[minLoc];
      arr[minLoc] = arr[i];
      arr[i] = temp;
    }
  }

复杂度分析

选择排序有两个特点:

  • 时间复杂度不受数组初始状态影响。因为不管是什么情况,每次交换前都会对数组进行扫描并找出最小值,并且这个扫描次数只会受扫描区间长度影响。因此在时间复杂度上,最好情况,平均情况和最差情况都是一样的。
  • 数据移动和数组大小是线性关系。下面的分析可以知道,该算法只需要进行 n 次交换。

时间复杂度

扫描

找到最小值需要对数组进行扫描。
第 1 次扫描区间 [ 0, length-1 ],需要 n 次。
第 2 次扫描区间 [ 1, length-1 ],需要 n-1 次。

第 i 次扫描区间 [ i-1, length-1 ],需要 n-i+1 次。

第 n 次扫描区间 [ length-1, length-1 ],需要 1 次。
一共是 1+2+3…+n = (n^2+n)/2 次

交换

每次扫描完一个区间,都会将该区间最小值和该区间第一个元素进行交换,一共扫描 n 次,也就是交换了 n 次。

总时间

得出总共需要 大约 (n^2)/2 次扫描和 n 次交换。
因此,时间复杂度为 O(n^2)。

空间复杂度

所需要的辅助存储空间只有扫描时临时存放的最小值,所以空间复杂度为 O(1)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值