大数据技术在包括微波介质陶瓷在内的材料筛选上的应用综述

本文探讨了大数据技术如何结合机器学习在材料科学领域,特别是微波介质陶瓷材料的筛选中发挥作用。面对海量的材料数据,通过数据变换、最佳子集选择、投影技术和正则化技术等,提高了筛选效率。此外,针对信息不足的问题,采用采样和近似技术补充数据。最终,通过回归技术建立模型,预测材料的介电常数,从而有效筛选出具有潜在价值的新材料。
摘要由CSDN通过智能技术生成

        电介质是应用于现代电子的较为普遍的一类重要材料,器件的性能很大程度受电介质性质的影响,具有定制特性的新型电介质材料对于更高效、性能更好的电子设备以及小型化至关重要。因此,需要具有适用于不同行业的一系列应用的特性的新型介电材料。然而,已知介电常数的化合物数量目前约为几百个,这大大限制了设计工程师的选择。且一般使用密度泛函微扰理论作为一种快速有效地筛选材料介电常数和折射率的方法,因此计算代价高且已有信息量较少成为了主要问题。此外,互联网上MaterialspProject数据库开源信息项目,使用户能轻松访问材质属性,如何通过数据集和相应计算方式更加快速、精确地寻找新的介电化合物是我们研究的主要方向。

        随着材料属性数据集规模的扩大,研究人员面临着理解海量信息并寻找新型介电质材料的艰巨任务。为了跟上数据爆炸的步伐,需要及时改变研究策略,介电材料的筛选方法正在迅速发展,以最好地利用已有材料数据。而在这中出现了一种新范式:大数据下机器学习技术对材料的筛选。原理为将已知材料作为训练集进行训练,并将训练后模型应用于材料数据库中,实现大范围筛选。对于输入的材料特征属性可应用的技术为:数据变换技术,针对数据分布不均,具有量纲等不适合训练的属性进行变换处理;最佳子集选取技术,对于大量潜在的汇总数据,选取强关联性的材料属性特征;投影技术,避免多个指标特征指向同一个材料特性,以线性或非线性变换来组合数据,以便构建一个潜在的低维高信息统计集;正则化技术,通过调整权重,减少模型训练过程中的过拟合。针对已知介电数据信息少可弥补的技术为:采样技术,通过数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

萌新待开发

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值