ABC-PMC (approximate bayesian computation Population Monte Carlo)

本文探讨了一种递进式的算法过程,首先设置高阈值采样相似样本,通过估计观察集获取初始值,然后进行多次迭代:每轮噪声注入并计算相似度,调整分布并更新协方差。核心内容围绕样本匹配、分布调整和协方差更新展开。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

 1.第一轮

  1. 设置较大的阈值 \xi
  2. 从先验采样 \theta ^*\sim p(\theta) ,在相似度在阈值内,共N个
  3. 使用\theta ^* 估计观察集得到估计值Y^*,Y^*\sim Model(\theta^*)
  4. 计算N个相似度
  5. 最后会得到\Theta _{1}^{N} = \left \{ N \times \theta^* \right \}
  6. 得到新的分布p(\theta^*) = \mathbf{W_1} =\left \{ N \times w_1^* :\frac{1}{N} \right \}
  7. 这是该轮的协方差 \Sigma _{1}=2\times cov(\Theta _i^N)

2.第2到J轮

每一轮 j

  1. 从上一轮的分布p(\theta^*)中采样:\theta^{**} \sim p(\theta_{j-1}^N)=\mathbf{W_{j-1}^N}
  2. 加入噪声 \theta ^{**} \sim N_d(\theta_{j-1}^N,\Sigma _{j-1})
  3. 计算相似度
  4. 得到 \Theta_{j}^N
  5. 设置分布W_j^N=\left \{ w_j^i : \frac{p(\theta_j^i)}{\sum_{u=1}^{N}\textbf{w}^u_{j-1}q_d(\theta^u_{j-1}|\theta_j^i,\Sigma _{j-1})) } \right \}
  6. 这是该轮的协方差 \Sigma _j=2 \times cov(\Theta _j)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

萌新待开发

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值