整数因子分解问题的解答

分析题目:

输入一个整数n,求有多少种整数组合可以相乘得出n,组合中整数的个数大于等于2,规定组合:整数组合相同但顺序不同的视为两种,如23=6和32=6,这是两种。但16和61视含1的即使顺序不同也视为一种。

构思:

设整数n=ij,i和j均为整数;,首先一个整数的任何一个因数组合要么一大一小,要么因数相等如完全平方数,这里定义i<=j; 而√n√n=n,√n+1的平方一定大于n,所以只需求出1到√n之间所有的因数即可,然后n/i就是每组组合中斜体样式i所对应的j的值。把所得因数存到一个a[1000]数组中并从小到大排列,这题的麻烦之处就在于n的因数可能可以再分解,假设因数i=ab,我们从两个角度看,一种是n=(a*j)*b,这时可以认为b也是n的因数;另一种n=(b*j)*a,这时可以认为a也是n的因数。所以因数不管怎样分解,所得的因数也一定是n的因数。我们用另一个数组dp[1000]来存放n的因数的因数(除1外不包括它本身)总和,如n=12,它的因数为1,2,3,4,6,12,它们的子因数总和分别为1,1,1,2,3,8,所以12的因数组合为8,下面是n=12时的程序分析表在这里插入图片描述

#include<math.h>
#include<stdio.h>
int dp[1000],k=0,a[1000];
void ul(int num)
{
int i;
for (i=1; i<sqrt(num); i++)
{
if(num%i==0)
{
a[k++]=i;
a[k++]=num/i;
}
}
if(i*i==num)
{
a[k++]=i;
}
}
void solve(int n)
{
int i,j;
dp[0]=1;
for(i=1; i<k; i++)
{
dp[i]=0;
for(j=0; j<i;j++)
{
if(a[i]%a[j]==0)//如果从a[1]开始的因数和比它小的因数相除取余为零
{
dp[i]=dp[i]+dp[j]; 则要把比它小的因数的子因数组合的和算为这个因数的因数组合之和。
}
}
}
}
int main()
{
int n;
scanf("%d",&n);
ul(n);//求出n所有的因数
int i,j,t;
//把因数从小到大排好
for(i=0; i<k-1; i++)
{
for(j=0; j<k-i-1; j++)
{
if(a[j]>a[j+1])
{
t=a[j];
a[j]=a[j+1];
a[j+1]=t;
}
}
}
//排好顺序后进入下面的solve函数
solve(n);
printf("%d",dp[k-1]);
return 0;
}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值