2020 7.29 Multi-University Training Contest 3

2020 Multi-University Training Contest 3

 

 

1004Tokitsukaze and Multiple

http://acm.hdu.edu.cn/showproblem.php?pid=6794

题意:给一个包含n个数的线段,问最多可以分成多少段使得每一段的和都是p的倍数,输出段数

思路:用map维护前缀和sum%p ,如果ma[sum%p]>0则说明这一段存在一个和是p的倍数,继续下一段的计算,此时字典要清0,且mp[0]=1;

code:

#include<iostream>
#include<cstdio>
#include<map>

using namespace std;

typedef long long ll;
int n,p;
int main()
{
	std::ios::sync_with_stdio(false);
	cin.tie(0),cout.tie(0);
	int t;
	cin>>t;
	while(t--){
		map<int,int> ma; 
		cin>>n>>p;
		int x;
		ll sum=0;
		int ans=0;
		ma[0]=1;
		for(int i=1;i<=n;i++){
			cin>>x;
			x%=p;
			sum=(sum+x)%p;
			if(ma.count(sum)){
				ans++;
				ma.clear();
				ma[0]=1;
				sum=0;//前缀和一定要从头开始算 
			}
			else ma[sum]++;
		}
		cout<<ans<<endl;
	}
	
	return 0;
}

Parentheses Matching

http://acm.hdu.edu.cn/showproblem.php?pid=6799

思路:我们要使括号匹配并且使字典序最小,就必须从左到右遍历,找到与")"匹配的左边的“(” ,如果找不到"("就把“*”变为"("且"("尽可能要靠左边,然后从右往左匹配找到与"("匹配的")"如果找不到")"就把"*"变为“)” 且")" 要尽可能的靠右边

我们首先要预处理一下俩个数组 l和r  这个操作类似于差分于前缀和

l[i]:表示s[i]之前有多少个“(”

r[i]: 表示s[i]之后有多少个“)”;

code

#include<iostream>
#include<cstdio>
#include<cstring>

using namespace std;

const int N=1e5+10;
char s[N];	
int l[N],r[N];
int main()
{
	int t;
	scanf("%d",&t); 
	while(t--){
		bool flag1 =0,flag2=0;
		scanf("%s",s+1);
		int len=strlen(s+1);
		for(int i=0;i<=len+1;i++) l[i]=r[i]=0;
		for(int i=1;i<=len;i++){
			if(s[i]=='(') l[i]++;
			else if(s[i]==')') r[i]++;
		}
		for(int i=1;i<=len;i++){//s[i]之前"("的数量 
			l[i]+=l[i-1];
		}
		for(int i=len;i>=1;i--){//s[i]之后")"的数量 
			r[i]+=r[i+1]; 
		} 
		int x=0;
		int start=1;
        //从前往后遍历添加"("
		for(int i=1;i<=len;i++){
			if(s[i]==')'){
				l[i]-=x;
				if(l[i]>=1){
					x++;
				}
				else{
					int j;
					for(j=start;j<i;j++){
						if(s[j]=='*'){
							s[j]='(';
							start=j+1;
							break;
						}
					}
					if(j==i) flag1=1;
				}
			}
			if(flag1){
				break;
			}
		}
		x=0;
		int end=len;
        //从后往前添加")"
		for(int i=len;i>=1;i--){
			if(s[i]=='('){
				r[i]-=x;
				if(r[i]>=1){
					x++;
				}
				else{
					int j;
					for(j=end;j>i;j--){
						if(s[j]=='*'){
							s[j]=')';
							end=j-1;
							break;
						}
					}
					if(j==i) flag2=1;
				}
			}
			if(flag2) break;		
		} 
		if(flag1||flag2) printf("No solution!\n");
		else {
			for(int i=1;i<=len ;i++){
				if(s[i]!='*') printf("%c",s[i]);
			}
			puts("");
		}
	}
	
	return 0;
}

 Little W and Contest

这个题参考了一下这个博客:

https://blog.csdn.net/njuptACMcxk/article/details/107641773?

题目:http://acm.hdu.edu.cn/showproblem.php?pid=6795

思路:这个题就是求 组成3个人互相不认识的队伍的 种类,先求最开始一条边都没加的情况数ans=C_{cnt_{2}}^{3}+C_{cnt_{2}}^{2} \times cnt_{1},然后建立一条关系,我们不能直接求加入这条关系后的情况数,观察可以发现,我们可以求得每次合并点减少的情况。

首先介绍一下p_{1}[u]:表示以u为根节点的图中权为1的点的个数 同理p_{2}[u]]

接下来就要找减少的情况数:G[u]  G[v]  G[r]

                                            1.  2    1        2

                                            2   1     2        2

                                            3   2      2        2

                                            4   2      2        1

code:

#include<iostream>
#include<cstring>

using namespace std;

typedef long long ll;
const int N=1e5+10;
const int mod=1e9+7;
ll p1[N],p2[N];
ll cnt[3];
int fa[N];
int n; 
int w;

int get(int x ){
	if(x==fa[x]) return x;
	return fa[x]=get(fa[x]);
}

ll C2(ll x){
	if(x<2) return 0;
	return x*(x-1)/2%mod;
}

ll C3(ll x ){
	if(x<3) return 0;
	return x*(x-1)*(x-2)/6%mod; 
}
int main()
{
	int t;
	scanf("%d",&t);
	while(t--){
		ll ans =0;
		memset(cnt,0,sizeof(cnt));
		scanf("%d",&n);
		for(int i=1;i<=n;i++ ) fa[i]=i,p1[i]=0,p2[i]=0;
		for(int i=1;i<=n;i++){
			scanf("%d",&w);
			if(w==1){
				cnt[1]++;
				p1[i]=1;
			}
			else{
				cnt[2]++;
				p2[i]=1;
			}
		}
		ans=(C3(cnt[2])+(C2(cnt[2])*cnt[1])%mod)%mod;//最开始总的情况数
		printf("%lld\n",ans);
		for(int i=1;i<n;i++){
			int u,v; 
			scanf("%d%d",&u,&v);
			ll k=0;
			int pu=get(u),pv=get(v);//要合并的俩个总共有四种减少的情况 
			k=(k+p2[pu]*p2[pv]*(cnt[2]-p2[pu]-p2[pv])%mod)%mod;
			k=(k+p1[pu]*p2[pv]*(cnt[2]-p2[pu]-p2[pv])%mod)%mod;
			k=(k+p2[pu]*p1[pv]*(cnt[2]-p2[pu]-p2[pv])%mod)%mod;
			k=(k+p2[pu]*p2[pv]*(cnt[1]-p1[pu]-p1[pv])%mod)%mod;
			ans=(ans-k+mod)%mod;
			printf("%lld\n",ans);
			fa[pv]=pu;
			p2[pu]+=p2[pv],p1[pu]+=p1[pv];
			p1[pv]=0,p2[pv]=0;
		}	
	} 	
	
	return 0;
 } 

Tokitsukaze and Rescue

http://acm.hdu.edu.cn/showproblem.php?pid=6797

思路:这是个求最短路的问题,只是有k段路被破坏了,现在问你怎么破坏这k段路才能使,1到n的距离最长

因为 k比较小,所以可以dfs枚举一下最短路中的每一段路径,把这一段这置为INF,每次更新ans即可

code:

#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<vector>
#define  INF 0x3f3f3f3f

using namespace std;

typedef pair<int,int> PII;
const int N=55;
int G[N][N];
int dis[N];
bool st[N];
int n,k;
int pre[N];
int ans;
void dijkstra()
{
	for(int i=1;i<=n;i++) dis[i]=INF, st[i]=0;
	priority_queue<PII , vector<PII> ,greater<PII> > heap;
	dis[1] = 0;
	heap.push({0,1});
	while(heap.size()){
		auto t= heap.top();
		heap.pop();
		int ver=t.second,distance = t.first;
		if(st[ver]) continue;
		st[ver]=1;
		for(int i=1;i<=n;i++){
			if(dis[i]>distance+G[ver][i]){
				dis[i]=distance+G[ver][i];
				pre[i]= ver;
				heap.push({dis[i],i});
			}
		} 
	}
}

void dfs(int num){
	dijkstra();
	if(num==k){
		ans=max(ans,dis[n]);
		return ;
	}
	vector<int> ve;
	ve.push_back(n);
	int x=n;
	while(x!=1){//找到最短的那个路径 
		x=pre[x];
		ve.push_back(x);
	}
	int w;
	for(int i=0;i<ve.size()-1;i++) {
		w=G[ve[i]][ve[i+1]];
		G[ve[i]][ve[i+1]]=G[ve[i+1]][ve[i]]=INF; 
		dfs(num+1);
		G[ve[i]][ve[i+1]]=G[ve[i+1]][ve[i]]=w;
	}
}
int main()
{
	int T;
	scanf("%d",&T);
	while(T--){
		scanf("%d%d",&n,&k);
		int a,b,c;
		for(int i=1;i<=(n-1)*n/2;i++){
			scanf("%d%d%d",&a,&b,&c);
			G[a][b]=G[b][a]=c;	
		} 
		ans=0;
		dfs(0);
		printf("%d\n",ans);
	} 
	
	return 0;
 } 

 

©️2020 CSDN 皮肤主题: 技术工厂 设计师:CSDN官方博客 返回首页