anaconda环境相关操作(创建、激活和列出环境)

anaconda环境相关操作(创建、激活和列出环境)

1. 列出目前有的环境和位置

conda env list

2.创建环境

conda create -n xxx python=3.7

xxx是你的环境名

3.激活环境

conda activate xxx

4.移除环境

conda remove -n xxx --all

在某环境中在线安装某库

pip install XXX

在某环境中安装指定版本的库

pip install -v xxx==2.3

在某环境中安装下载好的库

先cd进入库文件夹,之后

python setup.py install

5.在某环境中删除某库

pip uninstall XXX

6. 在某环境中升级某库

pip install --upgrade xxxx

7.临时采用某源安装某库

pip install xxxxx -i https://pypi.tuna.tsinghua.edu.cn/simple somepackage

注意:安装git时, 要用conda命令安装

conda install git
### Anaconda 创建激活虚拟环境 #### 虚拟环境的重要性 为了防止不同项目之间的库依赖冲突,在安装诸如 PyTorch 或 TensorFlow 等大型框架时,建议通过创建独立的 Python 虚拟环境来管理这些依赖项。 --- #### 创建虚拟环境的方法 可以使用 `conda` 命令轻松创建一个新的虚拟环境。以下是具体操作: 运行以下命令以创建名为 `myenv` 的新虚拟环境指定其使用的 Python 版本为 3.8: ```bash conda create --name myenv python=3.8 ``` 此命令会下载配置所需的包以及设置好路径[^3]。 如果希望加速这一过程或者解决网络连接问题,可以通过清华源等国内镜像站点获取资源。例如,添加参数 `--channel` 来指定镜像地址作为数据来源[^1]: ```bash conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ ``` 完成上述步骤之后即可执行创建指令。 --- #### 激活已有的虚拟环境 一旦成功构建了一个新的虚拟环境,则需要将其激活才能正常使用其中预设好的开发工具链。对于 Windows 平台而言,只需简单输入如下语句便可切换至目标环境(比如我们之前建立起来的那个叫做 'DeepPurpose' 的实例): ```bash conda activate DeepPurpose ``` 这条命令将会把当前工作目录下的终端 session 切换到该特定命名空间内运作, 进而使得所有的 pip install 其他相关联的操作都局限在这个隔离区域里发生而不影响全局系统设定[^2]. 同样地,如果你刚刚新建了上面提到过的 “myenv”,那么只需要替换掉名字部分就可以顺利启动它啦! --- #### 验证与退出 要确认现在处于哪个环境下作业的话,可以直接查看提示符前缀是否有显示对应标签名;另外也可以利用下面这个方法来进行双重保险检测: ```bash conda info --envs ``` 这将列出所有可用的 Conda 环境及其状态信息。 当结束本次实验后记得及时关闭当前活动中的特殊场域以免误删重要文件哦~ 只需键入一句简单的 deactivation order 即可返回默认初始条件: ```bash conda deactivate ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值