RocketMQ
网课 : 动力节点RocketMQ
笔记 :https://www.zgtsky.top
- RocketMQ简介
- RocketMQ概念
- RocketMQ安装
- RocketMQ快速入门
- RocketMQ消息模式
- RocketMQ重试机制
- RocketMQ重复消费问题
- RocketMQ集成SpringBoot
简介
官网: http://rocketmq.apache.org/
RocketMQ是阿里巴巴2016年MQ中间件,使用Java语言开发,RocketMQ 是一款开源的****分布式消息系统****,基于高可用分布式集群技术,提供低延时的、高可靠的消息发布与订阅服务。同时,广泛应用于多个领域,包括异步通信解耦、企业解决方案、金融支付、电信、电子商务、快递物流、广告营销、社交、即时通信、移动应用、手游、视频、物联网、车联网等。
具有以下特点:
-
l能够保证严格的消息顺序
-
l提供丰富的消息拉取模式
-
l高效的订阅者水平扩展能力
-
l实时的消息订阅机制
-
l亿级消息堆积能力
为什么要使用MQ
1,要做到系统解耦,当新的模块进来时,可以做到代码改动最小;能够解耦
2,设置流程缓冲池,可以让后端系统按自身吞吐能力进行消费,不被冲垮; 能够削峰,限流
3,强弱依赖梳理能把非关键调用链路的操作异步化并提升整体系统的吞吐能力;能够异步
Mq的作用 削峰限流 异步 解耦合
定义
中间件(缓存中间件 redis memcache 数据库中间件 mycat canal 消息中间件mq )
面向消息的中间件(message-oriented middleware) MOM能够很好的解决以上的问题。
是指利用高效可靠的消息传递机制进行与平台无关(跨平台)的数据交流,并基于数据通信来进行分布式系统的集成。
通过提供消息传递和消息排队模型在分布式环境下提供应用解耦,弹性伸缩,冗余存储,流量削峰,异步通信,数据同步等
大致流程
发送者把消息发给消息服务器[MQ],消息服务器把消息存放在若干队列/主题中,在合适的时候,消息服务器会把消息转发给接受者。在这个过程中,发送和接受是异步的,也就是发送无需等待,发送者和接受者的生命周期也没有必然关系在发布pub/订阅sub模式下,也可以完成一对多的通信,可以让一个消息有多个接受者[微信订阅号就是这样的]
特点
- 异步处理模式
消息发送者可以发送一个消息而无需等待响应。消息发送者把消息发送到一条虚拟的通道(主题或队列)上;
消息接收者则订阅或监听该通道。一条信息可能最终转发给一个或多个消息接收者,这些接收者都无需对消息发送者做出回应。整个过程都是异步的。
案例:
也就是说,一个系统和另一个系统间进行通信的时候,假如系统A希望发送一个消息给系统B,让它去处理,但是系统A不关注系统B到底怎么处理或者有没有处理好,所以系统A把消息发送给MQ,然后就不管这条消息的“死活” 了,接着系统B从MQ里面消费出来处理即可。至于怎么处理,是否处理完毕,什么时候处理,都是系统B的事,与系统A无关。
这样的一种通信方式,就是所谓的“异步”通信方式,对于系统A来说,只要把消息发给MQ,然后系统B就会 异步处去进行处理了,系统A不能“同步”的等待系统B处理完。这样的好处是什么呢?解耦
- 应用系统的解耦
发送者和接收者不必了解对方,只需要确认消息
发送者和接收者不必同时在线
- 现实中的业务
各个MQ产品的比较
RocketMQ重要概念【重点】
Producer:消息的发送者,生产者;举例:发件人
Consumer:消息接收者,消费者;举例:收件人
Broker:暂存和传输消息的通道;举例:快递
NameServer:管理Broker;举例:各个快递公司的管理机构 相当于broker的注册中心,保留了broker的信息
Queue:队列,消息存放的位置,一个Broker中可以有多个队列
Topic:主题,消息的分类
ProducerGroup:生产者组
ConsumerGroup:消费者组,多个消费者组可以同时消费一个主题的消息
消息发送的流程是,Producer询问NameServer,NameServer分配一个broker 然后Consumer也要询问NameServer,得到一个具体的broker,然后消费消息
生产和消费理解【重点】
安装&面板
安装方式 包安装或者docker安装 参考这个博客机械能安装https://blog.csdn.net/f5465245/article/details/130601991
如果采用包安装,这里提供了打包好的面板jar包:面板jar包
快速入门
RocketMQ提供了发送多种发送消息的模式,例如同步消息,异步消息,顺序消息,延迟消息,事务消息等
消息发送和监听的流程
消息生产者
1.创建消息生产者producer,并制定生产者组名
2.指定Nameserver地址
3.启动producer
4.创建消息对象,指定主题Topic、Tag和消息体等
5.发送消息
6.关闭生产者producer
消息消费者
1.创建消费者consumer,制定消费者组名
2.指定Nameserver地址
3.创建监听订阅主题Topic和Tag等
4.处理消息
5.启动消费者consumer
搭建demo
1 pom配置
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>3.2.1</version>
<relativePath/> <!-- lookup parent from repository -->
</parent>
<groupId>com.jiao</groupId>
<artifactId>RocketMQStud</artifactId>
<version>0.0.1-SNAPSHOT</version>
<name>RocketMQStud</name>
<description>RocketMQStud</description>
<properties>
<java.version>17</java.version>
</properties>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.apache.rocketmq</groupId>
<artifactId>rocketmq-client</artifactId>
<version>4.9.2</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.12</version>
</dependency>
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<version>1.18.22</version>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
</plugins>
</build>
</project>
2 代码
package com.jiao.rocketmqstud.part01;
import org.apache.rocketmq.client.consumer.DefaultMQPushConsumer;
import org.apache.rocketmq.client.consumer.listener.ConsumeConcurrentlyContext;
import org.apache.rocketmq.client.consumer.listener.ConsumeConcurrentlyStatus;
import org.apache.rocketmq.client.consumer.listener.MessageListenerConcurrently;
import org.apache.rocketmq.client.exception.MQBrokerException;
import org.apache.rocketmq.client.exception.MQClientException;
import org.apache.rocketmq.client.producer.DefaultMQProducer;
import org.apache.rocketmq.client.producer.SendResult;
import org.apache.rocketmq.common.message.Message;
import org.apache.rocketmq.common.message.MessageExt;
import org.apache.rocketmq.remoting.exception.RemotingException;
import org.junit.jupiter.api.Test;
import java.util.List;
public class Test01 {
@Test
public void producer() throws Exception {
//创建默认的生产者
DefaultMQProducer producer = new DefaultMQProducer("test-group");
// 设置nameServer地址 相当于RocketMQ的注册中心
producer.setNamesrvAddr("172.31.156.45:9876");
//启动实例
producer.start();
for (int i = 0; i < 10; i++) {
//创建消息
// 第一个参数:主题的名字
// 第二个参数:消息内容
Message msg = new Message("TopicTest", ("Hello RocketMQ " + i).getBytes());
SendResult send = producer.send(msg);
System.out.println(send);
}
// 关闭实例
producer.shutdown();
}
/**
* 测试消费者
*
* @throws Exception
*/
@Test
public void testConsumer() throws Exception {
// 创建默认消费者组
DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("consumer-group");
// 设置nameServer地址
consumer.setNamesrvAddr("172.31.156.45:9876");
// 订阅一个主题来消费 *表示没有过滤参数 表示这个主题的任何消息
consumer.subscribe("TopicTest", "*");
// 注册一个消费监听 MessageListenerConcurrently 是多线程消费,默认20个线程,可以参看consumer.setConsumeThreadMax()
consumer.registerMessageListener(new MessageListenerConcurrently() {
@Override
public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs,
ConsumeConcurrentlyContext context) {
System.out.println(Thread.currentThread().getName() + "----" + new String(msgs.get(0).getBody()));
// 返回消费的状态 如果是CONSUME_SUCCESS 则成功,若为RECONSUME_LATER则该条消息会被重回队列,重新被投递
// 重试的时间为messageDelayLevel = "1s 5s 10s 30s 1m 2m 3m 4m 5m 6m 7m 8m 9m 10m 20m 30m 1h 2h
// 也就是第一次1s 第二次5s 第三次10s .... 如果重试了18次 那么这个消息就会被终止发送给消费者
return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
// return ConsumeConcurrentlyStatus.RECONSUME_LATER;
}
});
// 这个start一定要写在registerMessageListener下面
consumer.start();
System.in.read();
}
}
消费模式
MQ的消费模式可以大致分为两种,一种是推Push,一种是拉Pull。
Push是服务端【MQ】主动推送消息给客户端,优点是及时性较好,但如果客户端没有做好流控,一旦服务端推送大量消息到客户端时,就会导致客户端消息堆积甚至崩溃。
Pull是客户端需要主动到服务端取数据,优点是客户端可以依据自己的消费能力进行消费,但拉取的频率也需要用户自己控制,拉取频繁容易造成服务端和客户端的压力,拉取间隔长又容易造成消费不及时。
Push模式也是基于pull模式的,只能客户端内部封装了api,一般场景下,上游消息生产量小或者均速的时候,选择push模式。在特殊场景下,例如电商大促,抢优惠券等场景可以选择pull模式
消息类型
同步消息
上面的快速入门就是发送同步消息,发送过后会有一个返回值,也就是mq服务器接收到消息后返回的一个确认,这种方式非常安全,但是性能上并没有这么高,而且在mq集群中,也是要等到所有的从机都复制了消息以后才会返回,所以针对重要的消息可以选择这种方式
异步消息
异步消息通常用在对响应时间敏感的业务场景,即发送端不能容忍长时间地等待Broker的响应。发送完以后会有一个异步消息通知
package com.jiao.rocketmqstud.asyn;
import org.apache.rocketmq.client.consumer.DefaultMQPushConsumer;
import org.apache.rocketmq.client.consumer.listener.ConsumeConcurrentlyContext;
import org.apache.rocketmq.client.consumer.listener.ConsumeConcurrentlyStatus;
import org.apache.rocketmq.client.consumer.listener.MessageListenerConcurrently;
import org.apache.rocketmq.client.producer.DefaultMQProducer;
import org.apache.rocketmq.client.producer.SendCallback;
import org.apache.rocketmq.client.producer.SendResult;
import org.apache.rocketmq.common.message.Message;
import org.apache.rocketmq.common.message.MessageExt;
import org.junit.jupiter.api.Test;
import java.util.List;
public class Test01 {
@Test
public void asynProducer() throws Exception {
DefaultMQProducer producer = new DefaultMQProducer("test-group");
producer.setNamesrvAddr("172.31.156.45:9876");
producer.start();
Message message = new Message("TopicTest", ("异步消息").getBytes());
producer.send(message, new SendCallback() {
@Override
public void onSuccess(SendResult sendResult) {
System.out.println("发送成功");
}
@Override
public void onException(Throwable throwable) {
System.out.println("发送失败");
}
});
System.out.println("谁先执行");
System.in.read();
producer.shutdown();
}
@Test
public void Consumer() throws Exception {
DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("comsumer-group");
consumer.setNamesrvAddr("172.31.156.45:9876");
consumer.subscribe("TopicTest", "*");
consumer.registerMessageListener(
new MessageListenerConcurrently() {
@Override
public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs, ConsumeConcurrentlyContext consumeConcurrentlyContext) {
System.out.println(Thread.currentThread().getName() + "----" + new String(msgs.get(0).getBody()));
return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
}
}
);
consumer.start();
System.in.read();
}
}
单向消息
这种方式主要用在不关心发送结果的场景,这种方式吞吐量很大,但是存在消息丢失的风险,例如日志信息的发送
package com.jiao.rocketmqstud.oneWay;
import org.apache.rocketmq.client.consumer.DefaultMQPushConsumer;
import org.apache.rocketmq.client.consumer.listener.ConsumeConcurrentlyContext;
import org.apache.rocketmq.client.consumer.listener.ConsumeConcurrentlyStatus;
import org.apache.rocketmq.client.consumer.listener.MessageListenerConcurrently;
import org.apache.rocketmq.client.producer.DefaultMQProducer;
import org.apache.rocketmq.common.message.Message;
import org.apache.rocketmq.common.message.MessageExt;
import org.junit.jupiter.api.Test;
import java.util.List;
public class Test01 {
@Test
public void testOnewayProducer() throws Exception {
// 创建默认的生产者
DefaultMQProducer producer = new DefaultMQProducer("test-group");
// 设置nameServer地址
producer.setNamesrvAddr("172.31.156.45:9876");
// 启动实例
producer.start();
Message msg = new Message("TopicTest", ("单向消息").getBytes());
// 发送单向消息
producer.sendOneway(msg);
// 关闭实例
producer.shutdown();
}
@Test
public void Consumer() throws Exception {
DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("comsumer-group");
consumer.setNamesrvAddr("172.31.156.45:9876");
consumer.subscribe("TopicTest", "*");
consumer.registerMessageListener(
new MessageListenerConcurrently() {
@Override
public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs, ConsumeConcurrentlyContext consumeConcurrentlyContext) {
System.out.println(Thread.currentThread().getName() + "----" + new String(msgs.get(0).getBody()));
return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
}
}
);
consumer.start();
System.in.read();
}
}
延迟消息
消息放入mq后,过一段时间,才会被监听到,然后消费
比如下订单业务,提交了一个订单就可以发送一个延时消息,30min后去检查这个订单的状态,如果还是未付款就取消订单释放库存。
package com.jiao.rocketmqstud.delay;
import org.apache.rocketmq.client.consumer.DefaultMQPushConsumer;
import org.apache.rocketmq.client.consumer.listener.ConsumeConcurrentlyContext;
import org.apache.rocketmq.client.consumer.listener.ConsumeConcurrentlyStatus;
import org.apache.rocketmq.client.consumer.listener.MessageListenerConcurrently;
import org.apache.rocketmq.client.producer.DefaultMQProducer;
import org.apache.rocketmq.common.message.Message;
import org.apache.rocketmq.common.message.MessageExt;
import org.junit.jupiter.api.Test;
import java.util.Date;
import java.util.List;
public class Test01 {
@Test
public void testDelayProducer() throws Exception {
// 创建默认的生产者
DefaultMQProducer producer = new DefaultMQProducer("test-group");
// 设置nameServer地址
producer.setNamesrvAddr("172.31.156.45:9876");
// 启动实例
producer.start();
Message msg = new Message("TopicTest", ("延迟消息").getBytes());
// 给这个消息设定一个延迟等级
// messageDelayLevel = "1s 5s 10s 30s 1m 2m 3m 4m 5m 6m 7m 8m 9m 10m 20m 30m 1h 2h
msg.setDelayTimeLevel(3);
// 发送消息
producer.send(msg);
// 打印时间
System.out.println(new Date());
// 关闭实例
producer.shutdown();
}
@Test
public void Consumer() throws Exception {
DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("comsumer-group");
consumer.setNamesrvAddr("172.31.156.45:9876");
consumer.subscribe("TopicTest", "*");
consumer.registerMessageListener(
new MessageListenerConcurrently() {
@Override
public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs, ConsumeConcurrentlyContext consumeConcurrentlyContext) {
System.out.println(Thread.currentThread().getName() + "----" + new String(msgs.get(0).getBody()));
return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
}
}
);
consumer.start();
System.in.read();
}
}
这里注意的是RocketMQ不支持任意时间的延时
只支持以下几个固定的延时等级,等级1就对应1s,以此类推,最高支持2h延迟
private String messageDelayLevel = “1s 5s 10s 30s 1m 2m 3m 4m 5m 6m 7m 8m 9m 10m 20m 30m 1h 2h”;
顺序消息
消息有序指的是可以按照消息的发送顺序来消费(FIFO)。RocketMQ可以严格的保证消息有序,
可以分为:分区有序或者全局有序。
可能大家会有疑问,mq不就是FIFO吗?
rocketMq的broker的机制,导致了rocketMq会有这个问题
因为一个broker中对应了四个queue
顺序消费的原理解析,在默认的情况下消息发送会采取Round Robin轮询方式把消息发送到不同的queue(分区队列);而消费消息的时候从多个queue上拉取消息,这种情况发送和消费是不能保证顺
序。但是如果控制发送的顺序消息只依次发送到同一个queue中,消费的时候只从这个queue上依次拉取,则就保证了顺序。当发送和消费参与的queue只有一个,则是全局有序;如果多个queue参
与,则为分区有序,即相对每个queue,消息都是有序的。
下面用订单进行分区有序的示例。一个订单的顺序流程是:下订单、发短信通知、物流、签收。订单顺序号相同的消息会被先后发送到同一个队列中,消费时,同一个顺序获取到的肯定是同一个队列。
场景分析
模拟一个订单的发送流程,创建两个订单,发送的消息分别是
订单号111 消息流程 下订单->物流->签收
订单号112 消息流程 下订单->物流->拒收
代码
订单实体
package com.jiao.rocketmqstud.entity;
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
import java.util.Date;
@Data
@AllArgsConstructor
@NoArgsConstructor
public class Order {
/**
* 订单id
*/
private Integer orderId;
/**
* 订单编号
*/
private Integer orderNumber;
/**
* 订单价格
*/
private Double price;
/**
* 订单号创建时间
*/
private Date createTime;
/**
* 订单描述
*/
private String desc;
}
生产 消费
package com.jiao.rocketmqstud.orderly;
import com.jiao.rocketmqstud.entity.Order;
import org.apache.rocketmq.client.consumer.DefaultMQPushConsumer;
import org.apache.rocketmq.client.consumer.listener.ConsumeOrderlyContext;
import org.apache.rocketmq.client.consumer.listener.ConsumeOrderlyStatus;
import org.apache.rocketmq.client.consumer.listener.MessageListenerOrderly;
import org.apache.rocketmq.client.producer.DefaultMQProducer;
import org.apache.rocketmq.client.producer.MessageQueueSelector;
import org.apache.rocketmq.common.message.Message;
import org.apache.rocketmq.common.message.MessageExt;
import org.apache.rocketmq.common.message.MessageQueue;
import org.junit.Test;
import java.util.Arrays;
import java.util.Date;
import java.util.List;
public class Test01 {
@Test
public void testOrderlyProducer() throws Exception {
// 创建默认的生产者
DefaultMQProducer producer = new DefaultMQProducer("orderly-group");
// 设置nameServer地址
producer.setNamesrvAddr("172.31.156.45:9876");
// 启动实例
producer.start();
List<Order> orderList = Arrays.asList(
new Order(1, 111, 59D, new Date(), "下订单"),
new Order(1, 111, 59D, new Date(), "物流"),
new Order(1, 111, 59D, new Date(), "签收"),
new Order(2, 112, 89D, new Date(), "下订单"),
new Order(2, 112, 89D, new Date(), "物流"),
new Order(2, 112, 89D, new Date(), "拒收")
);
// 循环集合开始发送
orderList.forEach(order -> {
Message message = new Message("TopicTest", order.toString().getBytes());
try {
// 发送的时候 相同的订单号选择同一个队列
producer.send(message, new MessageQueueSelector() {
@Override
public MessageQueue select(List<MessageQueue> mqs, Message msg, Object arg) {
// 当前主题有多少个队列
int queueNumber = mqs.size();
// 这个arg就是后面传入的 order.getOrderNumber()
Integer i = (Integer) arg;
// 用这个值去%队列的个数得到一个队列
int index = i % queueNumber;
// 返回选择的这个队列即可 ,那么相同的订单号 就会被放在相同的队列里 实现FIFO了
return mqs.get(index);
}
}, order.getOrderNumber());
} catch (Exception e) {
System.out.println("发送异常");
}
});
// 关闭实例
producer.shutdown();
}
@Test
public void testOrderlyConsumer() throws Exception {
// 创建默认消费者组
DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("consumer-group");
// 设置nameServer地址
consumer.setNamesrvAddr("172.31.156.45:9876");
// 订阅一个主题来消费 *表示没有过滤参数 表示这个主题的任何消息
consumer.subscribe("TopicTest", "*");
// 注册一个消费监听 MessageListenerOrderly 是顺序消费 单线程消费
consumer.registerMessageListener(new MessageListenerOrderly() {
@Override
public ConsumeOrderlyStatus consumeMessage(List<MessageExt> msgs, ConsumeOrderlyContext context) {
MessageExt messageExt = msgs.get(0);
System.out.println(new String(messageExt.getBody()));
return ConsumeOrderlyStatus.SUCCESS;
}
});
consumer.start();
System.in.read();
}
}
批量消息
Rocketmq可以一次性发送一组消息,那么这一组消息会被当做一个消息消费
package com.jiao.rocketmqstud.batch;
import org.apache.rocketmq.client.consumer.DefaultMQPushConsumer;
import org.apache.rocketmq.client.consumer.listener.ConsumeConcurrentlyContext;
import org.apache.rocketmq.client.consumer.listener.ConsumeConcurrentlyStatus;
import org.apache.rocketmq.client.consumer.listener.MessageListenerConcurrently;
import org.apache.rocketmq.client.producer.DefaultMQProducer;
import org.apache.rocketmq.client.producer.SendResult;
import org.apache.rocketmq.common.message.Message;
import org.apache.rocketmq.common.message.MessageExt;
import org.testng.annotations.Test;
import java.util.Arrays;
import java.util.List;
public class Test01 {
@Test
public void testBatchProducer() throws Exception {
// 创建默认的生产者
DefaultMQProducer producer = new DefaultMQProducer("test-group");
// 设置nameServer地址
producer.setNamesrvAddr("172.31.156.45:9876");
// 启动实例
producer.start();
List<Message> msgs = Arrays.asList(
new Message("TopicTest", "我是一组消息的A消息".getBytes()),
new Message("TopicTest", "我是一组消息的B消息".getBytes()),
new Message("TopicTest", "我是一组消息的C消息".getBytes())
);
SendResult send = producer.send(msgs);
System.out.println(send);
// 关闭实例
producer.shutdown();
}
@Test
public void testBatchConsumer() throws Exception {
// 创建默认消费者组
DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("consumer-group");
// 设置nameServer地址
consumer.setNamesrvAddr("172.31.156.45:9876");
// 订阅一个主题来消费 表达式,默认是*
consumer.subscribe("TopicTest", "*");
// 注册一个消费监听 MessageListenerConcurrently是并发消费
// 默认是20个线程一起消费,可以参看 consumer.setConsumeThreadMax()
consumer.registerMessageListener(new MessageListenerConcurrently() {
@Override
public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs,
ConsumeConcurrentlyContext context) {
// 这里执行消费的代码 默认是多线程消费
System.out.println(Thread.currentThread().getName() + "----" + new String(msgs.get(0).getBody()));
return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
}
});
consumer.start();
System.in.read();
}
}
tag&消息过滤
Rocketmq提供消息过滤功能,通过tag或者key进行区分
我们往一个主题里面发送消息的时候,根据业务逻辑,可能需要区分,比如带有tagA标签的被A消费,带有tagB标签的被B消费,还有在事务监听的类里面,只要是事务消息都要走同一个监听,我们也需要通过过滤才区别对待
package com.jiao.rocketmqstud.tag;
import org.apache.rocketmq.client.consumer.DefaultMQPushConsumer;
import org.apache.rocketmq.client.consumer.listener.ConsumeConcurrentlyContext;
import org.apache.rocketmq.client.consumer.listener.ConsumeConcurrentlyStatus;
import org.apache.rocketmq.client.consumer.listener.MessageListenerConcurrently;
import org.apache.rocketmq.client.producer.DefaultMQProducer;
import org.apache.rocketmq.client.producer.SendResult;
import org.apache.rocketmq.common.message.Message;
import org.apache.rocketmq.common.message.MessageExt;
import org.junit.Test;
import java.util.List;
public class Test01 {
@Test
public void testTagProducer() throws Exception {
// 创建默认的生产者
DefaultMQProducer producer = new DefaultMQProducer("test-group");
// 设置nameServer地址
producer.setNamesrvAddr("172.31.156.45:9876");
// 启动实例
producer.start();
Message msg = new Message("TopicTest", "tagA", "我是一个带标记的消息".getBytes());
SendResult send = producer.send(msg);
System.out.println(send);
// 关闭实例
producer.shutdown();
}
@Test
public void testTagConsumer() throws Exception {
// 创建默认消费者组
DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("consumer-group");
// 设置nameServer地址
consumer.setNamesrvAddr("172.31.156.45:9876");
// 订阅一个主题来消费 表达式,默认是*,支持"tagA || tagB || tagC" 这样或者的写法 只要是符合任何一个标签都可以消费
consumer.subscribe("TopicTest", "tagA || tagB || tagC");
// 注册一个消费监听 MessageListenerConcurrently是并发消费
// 默认是20个线程一起消费,可以参看 consumer.setConsumeThreadMax()
consumer.registerMessageListener(new MessageListenerConcurrently() {
@Override
public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs,
ConsumeConcurrentlyContext context) {
// 这里执行消费的代码 默认是多线程消费
System.out.println(Thread.currentThread().getName() + "----" + new String(msgs.get(0).getBody()));
System.out.println(msgs.get(0).getTags());
return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
}
});
consumer.start();
System.in.read();
}
}
什么时候该用 Topic,什么时候该用 Tag?
总结:不同的业务应该使用不同的Topic如果是相同的业务里面有不同表的表现形式,那么我们要使用tag进行区分
可以从以下几个方面进行判断:
1.消息类型是否一致:如普通消息、事务消息、定时(延时)消息、顺序消息,不同的消息类型使用不同的 Topic,无法通过 Tag 进行区分。
2.业务是否相关联:没有直接关联的消息,如淘宝交易消息,京东物流消息使用不同的 Topic 进行区分;而同样是天猫交易消息,电器类订单、女装类订单、化妆品类订单的消息可以用 Tag 进行区分。
3.消息优先级是否一致:如同样是物流消息,盒马必须小时内送达,天猫超市 24 小时内送达,淘宝物流则相对会慢一些,不同优先级的消息用不同的 Topic 进行区分。
4.消息量级是否相当:有些业务消息虽然量小但是实时性要求高,如果跟某些万亿量级的消息使用同一个 Topic,则有可能会因为过长的等待时间而“饿死”,此时需要将不同量级的消息进行拆分,使用不同的 Topic。
总的来说,针对消息分类,您可以选择创建多个 Topic,或者在同一个 Topic 下创建多个 Tag。但通常情况下,不同的 Topic 之间的消息没有必然的联系,而 Tag 则用来区分同一个 Topic 下相互关联的消息,例如全集和子集的关系、流程先后的关系。
Key标识
在rocketmq中的消息,默认会有一个messageId当做消息的唯一标识,我们也可以给消息携带一个key,用作唯一标识或者业务标识,包括在控制面板查询的时候也可以使用messageId或者key来进行查询
package com.jiao.rocketmqstud.key;
import org.apache.rocketmq.client.consumer.DefaultMQPushConsumer;
import org.apache.rocketmq.client.consumer.listener.ConsumeConcurrentlyContext;
import org.apache.rocketmq.client.consumer.listener.ConsumeConcurrentlyStatus;
import org.apache.rocketmq.client.consumer.listener.MessageListenerConcurrently;
import org.apache.rocketmq.client.producer.DefaultMQProducer;
import org.apache.rocketmq.client.producer.SendResult;
import org.apache.rocketmq.common.message.Message;
import org.apache.rocketmq.common.message.MessageExt;
import org.junit.Test;
import java.util.List;
public class Test01 {
@Test
public void testKeyProducer() throws Exception {
// 创建默认的生产者
DefaultMQProducer producer = new DefaultMQProducer("test-group");
// 设置nameServer地址
producer.setNamesrvAddr("172.31.156.45:9876");
// 启动实例
producer.start();
Message msg = new Message("TopicTest", "tagA", "key", "我是一个带标记和key的消息".getBytes());
SendResult send = producer.send(msg);
System.out.println(send);
// 关闭实例
producer.shutdown();
}
@Test
public void testKeyConsumer() throws Exception {
// 创建默认消费者组
DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("consumer-group");
// 设置nameServer地址
consumer.setNamesrvAddr("172.31.156.45:9876");
// 订阅一个主题来消费 表达式,默认是*,支持"tagA || tagB || tagC" 这样或者的写法 只要是符合任何一个标签都可以消费
consumer.subscribe("TopicTest", "tagA || tagB || tagC");
// 注册一个消费监听 MessageListenerConcurrently是并发消费
// 默认是20个线程一起消费,可以参看 consumer.setConsumeThreadMax()
consumer.registerMessageListener(new MessageListenerConcurrently() {
@Override
public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs,
ConsumeConcurrentlyContext context) {
// 这里执行消费的代码 默认是多线程消费
System.out.println(Thread.currentThread().getName() + "----" + new String(msgs.get(0).getBody()));
System.out.println(msgs.get(0).getTags());
System.out.println(msgs.get(0).getKeys());
return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
}
});
consumer.start();
System.in.read();
}
}
重复消费
rocketmq存在重复消费的问题
问题的产生:
- 生产者重复投递
- 消费者扩容reBalance
解决的方案:
- 发送方需要给消息携带一个唯一的标识(key标识),
可以将标识存放到redis中,也可以在数据库中建立一个去重表,先将key进行插入到表中如果已存在表示重复
- 消费者需要控制消息的幂等性
- 幂等性:多次操作产生的影响均和第一次操作产生的影响相同
为什么会出现重复消费问题
BROADCASTING(广播)模式下
,所有注册的消费者都会消费,而这些消费者通常是集群部署的一个个微服务,这样就会多台机器重复消费,当然这个是根据需要来选择。
CLUSTERING(负载均衡)模式下
,如果一个topic被多个consumerGroup消费,也会重复消费。
-
即使是在CLUSTERING模式下,同一个consumerGroup下,一个队列只会分配给一个消费者,看起来好像是不会重复消费。但是,有个特殊情况:一个消费者新上线后,同组的所有消费者要重新负载均衡(反之一个消费者掉线后,也一样)。一个队列所对应的新的消费者要获取之前消费的offset(偏移量,也就是消息消费的点位),此时之前的消费者可能已经消费了一条消息,但是并没有把offset提交给broker,那么新的消费者可能会重新消费一次。虽然orderly模式是前一个消费者先解锁,后一个消费者加锁再消费的模式,比起concurrently要严格了,但是加锁的线程和提交offset的线程不是同一个,所以还是会出现极端情况下的重复消费。
-
还有在发送批量消息的时候,会被当做一条消息进行处理,那么如果批量消息中有一条业务处理成功,其他失败了,还是会被重新消费一次。
那么如果在CLUSTERING(负载均衡)模式下,并且在同一个消费者组中,不希望一条消息被重复消费,改怎么办呢?我们可以想到去重操作,找到消息唯一的标识,可以是msgId也可以是你自定义
的唯一的key,这样就可以去重了
解决方案
使用去重方案解决,例如将消息的唯一标识存起来,然后每次消费之前先判断是否存在这个唯一标识,如果存在则不消费,如果不存在则消费,并且消费以后将这个标记保存。
想法很好,但是消息的体量是非常大的,可能在生产环境中会到达上千万甚至上亿条,那么我们该如何选择一个容器来保存所有消息的标识,并且又可以快速的判断是否存在呢?
我们可以选择布隆过滤器(BloomFilter)
布隆过滤器(Bloom Filter)是1970年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都比一般的算法要好的多,缺点是有一定的误识别率和删除困难。在hutool的工具中我们可以直接使用,当然你自己使用redis的bitmap类型手写一个也是可以的 https://hutool.cn/docs/#/bloomFilter/%E6%A6%82%E8%BF%B0
pom依赖
<dependency>
<groupId>cn.hutool</groupId>
<artifactId>hutool-all</artifactId>
<version>5.7.11</version>
</dependency>
package com.jiao.rocketmqstud.repeat;
import cn.hutool.bloomfilter.BitMapBloomFilter;
import cn.hutool.core.lang.UUID;
import org.apache.rocketmq.client.consumer.DefaultMQPushConsumer;
import org.apache.rocketmq.client.consumer.listener.ConsumeConcurrentlyContext;
import org.apache.rocketmq.client.consumer.listener.ConsumeConcurrentlyStatus;
import org.apache.rocketmq.client.consumer.listener.MessageListenerConcurrently;
import org.apache.rocketmq.client.producer.DefaultMQProducer;
import org.apache.rocketmq.client.producer.SendResult;
import org.apache.rocketmq.common.message.Message;
import org.apache.rocketmq.common.message.MessageExt;
import org.apache.rocketmq.common.protocol.heartbeat.MessageModel;
import org.junit.Test;
import java.util.List;
public class Test01 {
@Test
public void testRepeatProducer() throws Exception {
// 创建默认的生产者
DefaultMQProducer producer = new DefaultMQProducer("test-group");
// 设置nameServer地址
producer.setNamesrvAddr("172.31.156.45:9876");
// 启动实例
producer.start();
// 我们可以使用自定义key当做唯一标识
String keyId = UUID.randomUUID().toString();
System.out.println(keyId);
Message msg = new Message("TopicTest", "tagA", keyId, "我是一个测试消息".getBytes());
SendResult send = producer.send(msg);
producer.send(msg);
System.out.println(send);
// 关闭实例
producer.shutdown();
}
/**
* 在boot项目中可以使用@Bean在整个容器中放置一个单利对象
*/
public static BitMapBloomFilter bloomFilter = new BitMapBloomFilter(100);
@Test
public void testRepeatConsumer() throws Exception {
// 创建默认消费者组
DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("consumer-group");
consumer.setMessageModel(MessageModel.BROADCASTING);
// 设置nameServer地址
consumer.setNamesrvAddr("172.31.156.45:9876");
// 订阅一个主题来消费 表达式,默认是*
consumer.subscribe("TopicTest", "*");
// 注册一个消费监听 MessageListenerConcurrently是并发消费
// 默认是20个线程一起消费,可以参看 consumer.setConsumeThreadMax()
consumer.registerMessageListener(new MessageListenerConcurrently() {
@Override
public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs,
ConsumeConcurrentlyContext context) {
// 拿到消息的key
MessageExt messageExt = msgs.get(0);
String keys = messageExt.getKeys();
// 判断是否存在布隆过滤器中
if (bloomFilter.contains(keys)) {
// 直接返回了 不往下处理业务
System.out.println("it has okkk");
return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
}
// 这个处理业务,然后放入过滤器中
// do sth...
System.out.println("first one");
bloomFilter.add(keys);
return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
}
});
consumer.start();
System.in.read();
}
}
重试机制
生产者重试
// 失败的情况重发3次
producer.setRetryTimesWhenSendFailed(3);
// 消息在1S内没有发送成功,就会重试
producer.send(msg, 1000);
消费者重试
在消费者放return ConsumeConcurrentlyStatus.RECONSUME_LATER;后就会执行重试
上图代码中说明了,在实际生产过程中,一般重试3-5次,如果还没有消费成功,则可以把消息签收了,通知人工等处理
一般使用此方法可以替代对死信队列的监督
/**
* 测试消费者
*
* @throws Exception
*/
@Test
public void testConsumer() throws Exception {
// 创建默认消费者组
DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("consumer-group");
// 设置nameServer地址
consumer.setNamesrvAddr("localhost:9876");
// 订阅一个主题来消费 *表示没有过滤参数 表示这个主题的任何消息
consumer.subscribe("TopicTest", "*");
// 注册一个消费监听
consumer.registerMessageListener(new MessageListenerConcurrently() {
@Override
public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs,
ConsumeConcurrentlyContext context) {
try {
// 这里执行消费的代码 业务代码
System.out.println(Thread.currentThread().getName() + "----" + msgs);
// 这里制造一个错误
int i = 10 / 0;
} catch (Exception e) {
// 出现问题 判断重试的次数
MessageExt messageExt = msgs.get(0);
// 获取重试的次数 失败一次消息中的失败次数会累加一次
int reconsumeTimes = messageExt.getReconsumeTimes();
if (reconsumeTimes >= 3) {
// 重试达到最大值,要决定如何处理
// 则把消息确认了,可以将这条消息记录到日志或者数据库 通知人工处理
return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
} else {
return ConsumeConcurrentlyStatus.RECONSUME_LATER;
}
}
return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
}
});
consumer.start();
System.in.read();
}
死信消息
当消费重试到达阈值以后,消息不会被投递给消费者了,而是进入了死信队列。
当一条消息初次消费失败,RocketMQ会自动进行消息重试,达到最大重试次数后,若消费依然失败,则表明消费者在正常情况下无法正确地消费该消息。
此时,该消息不会立刻被丢弃,而是将其发送到该消费者对应的特殊队列中,这类消息称为死信消息(Dead-Letter Message),存储死信消息的特殊队列称为死信队列(Dead-Letter Queue),死信队列是死信Topic下分区数唯一的单独队列。
如果产生了死信消息,那对应的ConsumerGroup的死信Topic名称为%DLQ%ConsumerGroupName,死信队列的消息将不会再被消费。
可以利用RocketMQ Admin工具或者RocketMQ Dashboard上查询到对应死信消息的信息。我们也可以去监听死信队列,然后进行自己的业务上的逻辑。
package com.jiao.rocketmqstud.tryAnddeath;
import org.apache.rocketmq.client.consumer.DefaultMQPushConsumer;
import org.apache.rocketmq.client.consumer.listener.ConsumeConcurrentlyContext;
import org.apache.rocketmq.client.consumer.listener.ConsumeConcurrentlyStatus;
import org.apache.rocketmq.client.consumer.listener.MessageListenerConcurrently;
import org.apache.rocketmq.client.producer.DefaultMQProducer;
import org.apache.rocketmq.common.message.Message;
import org.apache.rocketmq.common.message.MessageExt;
import org.junit.Test;
import java.util.List;
public class Test01 {
@Test
public void testDeadMsgProducer() throws Exception {
DefaultMQProducer producer = new DefaultMQProducer("dead-group");
producer.setNamesrvAddr("172.31.156.45:9876");
producer.start();
Message message = new Message("dead-topic", "我是一个死信消息".getBytes());
producer.send(message);
producer.shutdown();
}
@Test
public void testDeadMsgConsumer() throws Exception {
DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("dead-group");
consumer.setNamesrvAddr("172.31.156.45:9876");
consumer.subscribe("dead-topic", "*");
// 设置最大消费重试次数 2 次
consumer.setMaxReconsumeTimes(2);
consumer.registerMessageListener(new MessageListenerConcurrently() {
@Override
public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs, ConsumeConcurrentlyContext context) {
System.out.println(msgs);
// 测试消费失败
return ConsumeConcurrentlyStatus.RECONSUME_LATER;
}
});
consumer.start();
System.in.read();
}
//死信消费者, 上面的消费者重试一定次数后,将消息放入到了死信队列,这里监督死信队列进行处理
@Test
public void testDeadMq() throws Exception {
DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("dead-group");
consumer.setNamesrvAddr("172.31.156.45:9876");
// 消费重试到达阈值以后,消息不会被投递给消费者了,而是进入了死信队列
// 队列名称 默认是 %DLQ% + 消费者组名
consumer.subscribe("%DLQ%dead-group", "*");
consumer.registerMessageListener(new MessageListenerConcurrently() {
@Override
public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs, ConsumeConcurrentlyContext context) {
System.out.println(msgs);
// 处理消息 签收了
return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
}
});
consumer.start();
System.in.read();
}
}
集成springboot
额,不写了,写出来比较乱。
参考其他人的博客:RocketMQ集成springboot
消息堆积
一般认为单条队列消息差值>=10w时 算堆积问题
出现原因
-
生产太快了
- 生产方可以做业务限流
- 增加消费者数量,但是消费者数量 <= 队列数量,适当的设置最大的消费线程数量(根据IO(2n)/CPU(n+1))
- IO型 代表要进行大量的IO读写操作,此时cpu处于空闲状态,将线程数量可以设置的更大。
- CPU型 代表进行大量的计算操作,此时每个线程需要更多的cpu时间,要将线程数量设置的小一些,上下文切换会造成更多的时间消耗。
- 动态扩容队列数量,从而增加消费者数量
-
消费者消费出现问题
- 排查消费者程序的问题
消息丢失
- 生产者使用同步发送模式 ,收到mq的返回确认以后 顺便往自己的数据库里面写 msgId status(0) time
- 消费者消费以后 修改数据这条消息的状态 = 1
- 写一个定时任务 间隔两天去查询数据 如果有status = 0 and time < day-2
- 将mq的刷盘机制设置为同步刷盘
- 使用集群模式 ,搞主备模式,将消息持久化在不同的硬件上
- 可以开启mq的trace机制,消息跟踪机制
- 在broker.conf中开启消息追踪 traceTopicEnable=true
- 重启broker即可
- 生产者配置文件开启消息轨迹 enable-msg-trace: true
- 消费者开启消息轨迹功能,可以给单独的某一个消费者开启 enableMsgTrace = true
在rocketmq的面板中可以查看消息轨迹 默认会将消息轨迹的数据存在 RMQ_SYS_TRACE_TOPIC 主题里面
安全
-
开启acl的控制 在broker.conf中开启aclEnable=true
-
配置账号密码 修改plain_acl.yml
-
修改控制面板的配置文件 放开52/53行 把49行改为true 上传到服务器的jar包平级目录下即可 springboot项目读取配置文件的优先级