图像识别
文章平均质量分 80
本专栏主要介绍数字图像的基本概念,图像处理和特征提取,以及图像识别的四大任务:图像分类、目标检测、语义分割、实例分割。通过本次课程需要掌握数字图像的处理、提取边缘、特征点特征和基于深度学习解决图像识别的四大任务。
不懂开发的程序猿
我有一个梦想,我写的代码,可以像诗一样优美。我有一个梦想,我做的设计,能恰到好处,既不过度,也无不足。
展开
-
基于OpenCV-DNN的YOLOv9目标检测实现
YOLO算法将物体检测作为回归问题求解。基于一个单独的end-to-end网络,完成从原始图像的输入到物体位置和类别的输出。YOLOv9主要的特点是它可以在三种不同的尺度上进行检测,利用多尺度特征进行目标检测。本次实验使用OpenCV的DNN模块,使用根据COCO数据集训练好的YOLOv9模型的权重,对test.jpg图片进行目标检测。原创 2024-05-05 13:30:09 · 770 阅读 · 0 评论 -
基于OpenCV-DNN的Faster-RCNN目标检测实现
Faster-RCNN,将目标检测的四个基本步骤(候选区域生成,特征提取,分类,位置精修)统一到一个深度网络框架之内。Faster-RCNN在多个数据集上表现优秀,且容易进行迁移,对数据集中的目标类进行更改就可以很好的改变测试模型。本次实验使用OpenCV的DNN模块,使用根据COCO数据集训练好的模型的权重,对test.jpg图片进行目标检测。原创 2024-05-05 13:20:13 · 973 阅读 · 0 评论 -
图像识别 之 目标检测
图像识别 之 目标检测原创 2024-05-05 12:48:20 · 316 阅读 · 0 评论 -
基于卷积神经网络ResNet50的猫狗图像分类
本次实验使用猫狗图像数据集,数据集中包含25000张猫和狗的图像(12500张猫的图像,12500张狗的图像),这些图像都是中等分辨率的彩色JPEG图像。我们将选取其中的猫狗图像各1500张用于训练,500张图像用于验证。本次实验将使用猫狗图像数据集基于ResNet50网络模型构建神经网络完成分类。原创 2024-05-05 12:29:54 · 1236 阅读 · 1 评论 -
基于卷积神经网络的Cifar-10图像分类
本次实验使用Cifar10数据集,Cifar10是一个由彩色图像组成的分类的数据集,其中包含了飞机、汽车、鸟、猫、鹿、狗、 青蛙、马、船、卡车10个类别。每个类中包含了6000张图片。整个数据集中包含了6万张32×32的彩色图片。该数据集被分成50000和10000两部分,50000作为训练数据,用来做训练;10000是测试数据,用来做验证。原创 2024-05-05 12:22:22 · 914 阅读 · 0 评论 -
图像识别及分类
图像识别及分类原创 2024-05-05 12:14:27 · 211 阅读 · 0 评论 -
基于OpenCv的图像全景拼接
图像拼接的主要目的是为了解决相机视野限制,生成更宽的图像场景。简单来说图像拼接技术就是把若干幅有重叠部分的图像合成一幅大视角宽幅面的图像。图像拼接技术已普遍出现在海洋和矿产勘测、卫星遥感探索、医学成像、计算机特效生成以及近期热门的虚拟现实等领域。本次实验是基于特征点匹配的全景图像拼接算法,首先提取各图像中的SIFT特征,通过特征点匹配完成两幅图像的配准;再根据图像配准结果计算出图像间的变换矩阵;最后通过视角变换矩阵变换图像进行拼接。原创 2024-05-05 12:02:26 · 1396 阅读 · 0 评论 -
基于OpenCv的图像SIFT特征点检测和特征匹配
SIFT是一种基于尺度空间的,对图像缩放、旋转甚至仿射变换保持不变性的图像局部特征描述算子。SIFT是迄今使用最为广泛的一种特征提取方法。图像点特征能够代表图像的内容,所以在运动目标跟踪、物体识别、图像配准、全景图像的拼接、三维重建等方向中,图像特征点的提取都至关重要,特征点提取的好坏将直接决定目标跟踪、物体识别、图像匹配、图像拼接、三维重建的准确度。原创 2024-05-04 17:21:20 · 2586 阅读 · 0 评论 -
基于OpenCv的图像Harris角点检测
角点检测(corner detection)是计算机视觉系统中获得图像特征的一种方法,由于角点检测的实时性和稳定性,所以角点检测广泛应用于运动检测、图像匹配、视频跟踪、三维建模和目标识别等领域。角点作为一种特征点,角点检测也被称为特征点检测。原创 2024-05-04 17:15:05 · 1137 阅读 · 0 评论 -
基于OpenCv的图像特征点检测
特征点检测结合了边缘检测与角点检测从而识别出图形的特征点。特征点在保留图像图形重要特征的同时,可以代替整幅图像的处理,有效地减少信息的数据量,有效地提高了计算的速度,有利于图像的可靠匹配,使得实时处理成为可能。原创 2024-05-04 17:09:30 · 1286 阅读 · 0 评论 -
图像特征点检测
图像特征点检测原创 2024-05-04 16:58:32 · 271 阅读 · 0 评论 -
基于OpenCv的图像Canny边缘检测
边缘检测是图像处理与识别中最基础、最重要的内容之一。一幅图像就是一个信息系统,其大量信息是由它的轮廓边缘提供的。对图像分析和理解的第一步常常是边缘检测。例如,车牌照片预处理是汽车牌照识别系统中的一个重要的环节,预处理的好坏对车牌系统识别率影响很大,可以利用边缘检测对车牌定位得到车牌区域,获取轮廓原创 2024-05-04 16:45:46 · 728 阅读 · 0 评论 -
基于OpenCv的图像边缘检测2
边缘主要存在于目标与目标、目标与背景、区域与区域之间,是图像分割、纹理特征和形状特征等图像分析的重要基础。对图像分析和理解的第一步常常是边缘检测。例如,在人脸检测中,利用边缘检测技术从大量的人脸中找到对应的特征,并通过训练出不同的分类器,如嘴巴分类器、眼睛分类器等,从而实现人脸及关键部位的检测。原创 2024-05-04 16:39:14 · 569 阅读 · 0 评论 -
基于OpenCv的图像边缘检测1
边缘主要存在于目标与目标、目标与背景、区域与区域之间,是图像分割、纹理特征和形状特征等图像分析的重要基础。对图像分析和理解的第一步常常是边缘检测。例如,在人脸检测中,利用边缘检测技术从大量的人脸中找到对应的特征,并通过训练出不同的分类器,如嘴巴分类器、眼睛分类器等,从而实现人脸及关键部位的检测。原创 2024-05-04 15:38:18 · 1251 阅读 · 0 评论 -
图像边缘检测
图像边缘检测原创 2024-05-04 15:32:15 · 201 阅读 · 0 评论 -
基于OpenCv的图像金字塔
本次实验主要完成基于拉普拉斯金字塔的图像无缝融合任务,任务首先生成高斯金字塔,然后根据生成的高斯金字塔生成拉普拉斯金字塔,再将拉普拉斯的每一层进行图像融合,根据融合后的图像金字塔重建原始图像。原创 2024-05-04 15:18:25 · 928 阅读 · 0 评论 -
基于OpenCv的图像傅里叶变换
傅里叶变换将原来难以处理的时域信号转换成了易于分析的频域信号,可以利用一些工具对这些频域信号进行处理、加工。最后还可以利用傅里叶反变换将这些频域信号转换成时域信号。图像经过傅里叶变换后,大部分能力都分布于低频谱段,这对以后图像的压缩、传输都比较有利。原创 2024-05-04 14:55:50 · 974 阅读 · 0 评论 -
基于OpenCv的图像几何变换
基于OpenCv的图像几何变换原创 2024-05-04 14:49:56 · 1109 阅读 · 0 评论 -
基于OpenCv的图像合成和直方图均衡化
基于OpenCv的图像合成和直方图均衡化原创 2024-05-04 14:42:20 · 1155 阅读 · 0 评论 -
基于OpenCv的形态学运算
基于OpenCv的形态学运算--形态学运算是针对二值图像的图像处理方法。利用形态学运算对图像进行观察和处理,可以达到改善图像质量的目的。原创 2024-05-04 13:58:09 · 605 阅读 · 0 评论 -
图像识别处理及应用
图像识别处理及应用原创 2024-05-04 13:36:09 · 182 阅读 · 0 评论 -
基于OpenCv的图像二值图和灰度直方图
基于OpenCv的图像二值图和灰度直方图原创 2024-04-30 15:09:36 · 720 阅读 · 0 评论 -
基于OpenCv的图像基本操作
基于OpenCv的图像基本操作原创 2024-04-30 15:01:42 · 591 阅读 · 1 评论 -
数字图像基础
数字图像基础原创 2024-04-30 14:50:50 · 83 阅读 · 0 评论 -
图像识别应用技术
图像识别应用技术原创 2024-04-30 14:35:21 · 123 阅读 · 0 评论