- 如果参与运算的两个对象 都是 ndarray,并且形状相同,那么会对位彼此之间进行(+ - * /)运算。NumPy 算术函数包含简单的加减乘除: add(),subtract(),multiply()和 divide()。
import numpy as np
a = np.arange(9).reshape(3, 3)
b = np.array([10, 10, 10])
print('加法')
# print(a+b)
print(np.add(a, b))
print('减法')
print(np.subtract(a, b))
print('乘法')
print(np.multiply(a, b))
print('除法')
print(np.divide(a, b))
# out参数使用
y = np.empty((3, 3))
print(np.multiply(a, 10, out=y))
print(y)
-
三角函数
-
标准的三角函数:sin()、cos()、tan()。
a = np.array([0, 30, 60, 90])
print(np.sin(a))
- decimals: 舍入的小数位数。 默认值为 0。 如果为负,整数将四舍五入到小数点左侧的位
置 - numpy.floor() 返回数字的下舍整数。
- numpy.ceil() 返回数字的上入整数。
a = np.array([1.0,4.55, 123, 0.567, 25.532])
print ('原数组:')
print (a)
print ('round 舍入后:')
print (np.around(a))
print (np.around(a, decimals = 1))
print (np.around(a, decimals = -1))
print('floor 向下取整:')
print(np.floor(a))
print('ceil 向上取整:')
print(np.ceil(a))
- 聚合函数
- power
- median
- mean
import numpy as np
# power
a=np.arange(12).reshape(3, 4)
print('原来的数组')
print(a)
print(np.power(a, 2))
# power 函数指定输出结果的用法
a = np.arange(12).reshape(3, 4)
print('原来的数组')
print(a)
print(np.power(a, 2))
# numpy. median ()函数的使用
a=np.array([4, 2, 1, 5])
# 计算偶数的中位数
print('偶数的中位数:', np.median(a))
a=np.array([4, 2, 1])
print('奇数个的中位数:', np.median(a))
a=np.arange(1, 16).reshape(3, 5)
print('原来的数组')
print(a)
print('调用 median 函数')
print(np.median(a))
print('调用 median 函数,axis=1 行的中值')
print(np.median(a, axis=1))
print('调用 median 函数,axis=0 列的中值')
print(np.median(a, axis=0))
# numpy.mean() 函数返回数组中元素的算术平均值。 如果提供了轴,
a = np.arange(1, 11).reshape(2, 5)
print('原来的数组')
print(a)
print('调用 mean 函数')
print(np.mean(a))
print('调用 mean 函数 axis=0 列')
print(np.mean(a, axis=0))
print('调用 mean 函数 axis=1 行')
print(np.mean(a, axis=1))