- 博客(758)
- 资源 (7)
- 收藏
- 关注
原创 Django原子请求
Django的原子请求(ATOMIC_REQUESTS)机制将每个HTTP请求作为数据库事务处理,确保操作要么全部成功要么全部回滚。通过在settings.py中配置DATABASES选项启用,它简化了开发并保证数据一致性,但可能影响性能且不适合长时间请求。最佳实践是根据业务需求选择性使用,推荐在简单CRUD操作中启用,而对复杂流程或文件处理则应采用更细粒度的事务控制。开发者可通过@transaction.atomic装饰器灵活管理事务边界,平衡数据安全性与系统性能。
2026-01-14 11:40:28
365
原创 LangChain中的结构化输出
LangChain结构化输出功能解析 LangChain支持智能体按预设格式(JSON、Pydantic模型等)生成结构化输出,简化自然语言解析。通过create_agent函数配置response_format参数,支持两种策略: ProviderStrategy:利用模型提供商(如OpenAI)的原生结构化输出能力,需定义schema(Pydantic模型/数据类等)和可选的strict严格校验。 ToolStrategy:通过工具调用兼容多数模型,支持自定义错误处理(handle_errors)和工具
2026-01-13 10:59:09
1058
原创 LangChain 前端流式输出(Frontend Streaming)
摘要: LangChain 和 LangGraph 通过 React Hook useStream 提供前端流式支持,简化流式消息处理、状态管理和对话分支逻辑。useStream 支持消息流式传输、自动状态管理、对话分支和自定义 UI,适用于本地或生产环境(如 LangSmith 托管)。安装需引入 LangGraph SDK,基本用法包括连接代理、提交消息和渲染状态。核心参数涵盖代理 ID、API 配置、线程管理和回调函数,返回值提供消息、状态、工具调用等交互功能。通过 threadId 可实现对话持久化
2026-01-13 10:55:05
985
原创 LangChain 流式输出(Streaming)
LangChain结合LangGraph实现了强大的流式输出系统,支持实时反馈代理运行状态。该系统提供三种核心流式模式:代理进度更新(updates)、LLM Token流式传输(messages)和自定义数据推送(custom)。通过stream_mode参数可灵活配置输出内容,支持多模式并行传输。典型应用包括实时显示工具调用过程、逐Token输出LLM响应以及推送自定义状态信息。该系统显著提升了基于大语言模型应用的交互体验,特别适用于需要低延迟反馈的场景。开发者可根据需求选择不同流式模式,或组合使用以实
2026-01-13 10:41:38
1125
原创 大模型 API 中的 Token Log Probabilities(logprobs)
摘要: logprobs是大模型生成内容时按token逐个预测的概率对数(log(probability)),用于揭示模型内部决策过程。其数学意义在于防止浮点下溢、增强数值稳定性,并便于累计句子总概率。通过API(如GPT-4)可获取top-N候选token及其logprobs,返回结构包含选中token及其对数概率。典型应用包括评估置信度、答案排序、审核幻觉及分析模型语言习惯。计算整句概率需累加token的logprob并取指数,还可通过可视化分析概率分布。需注意tokenization差异、跨模型不可比
2026-01-08 21:56:58
1387
原创 LangChain短期内存系统
摘要: 短期内存是LangChain框架的核心组件,用于管理单次会话的交互历史,提升AI智能体的连贯性和用户体验。针对长对话的上下文挑战,LangChain提供了检查点机制(如内存或PostgreSQL存储)、消息修剪/删除策略及摘要技术来优化内存管理。开发者可通过扩展AgentState自定义内存结构,并在工具中通过runtime参数访问会话状态。这些功能共同确保智能体在复杂任务中高效运作,同时适应不同生产环境需求。
2026-01-08 21:46:28
1610
原创 LangChain Tools 工具使用
本文介绍了LangChain框架中工具(Tools)的概念与实现方法。工具作为扩展AI代理能力的核心组件,通过声明式定义和运行时集成,使模型能够执行实际任务。文章详细讲解了基础工具创建方法(如装饰器使用、自定义属性)、高级模式定义(如Pydantic模型定义复杂输入),以及运行时上下文访问(包括ToolRuntime、状态管理和上下文访问)。这些技术使语言模型能够超越文本生成,实现与外部系统的交互和复杂任务执行。
2026-01-08 21:40:54
1687
原创 LangChain Messages模块
本文介绍了LangChain中消息(Messages)的核心概念和使用方法。消息作为模型交互的基本单元,包含角色、内容和元数据三部分,支持系统消息、人类消息、AI消息和工具消息四种类型。文章详细说明了三种调用格式(文本提示、消息对象列表和字典格式)以及完整的工作流程示例。高级功能包括工具调用、令牌使用统计和流式响应处理。消息内容支持字符串、原生格式和标准内容块三种表示形式,并具备多模态输入能力,可处理文本、图像等多种数据类型。
2026-01-08 21:37:26
1147
原创 LangChain 模型模块使用详解
LangChain的Models模块为开发者提供了标准化接口,用于与各类大型语言模型(LLM)交互。该模块支持主流模型提供商(如OpenAI、Anthropic等),提供文本生成、分类、问答等功能,并支持工具调用、结构化输出等高级特性。开发者可通过init_chat_model初始化模型,使用invoke、stream和batch三种方式调用模型,还能通过参数配置模型行为。模块还支持流式输出和批处理,提升用户体验和效率。工具调用功能使模型能够请求执行外部工具,进一步扩展应用场景。
2026-01-08 21:28:11
1442
原创 LangChain智能体(Agents)全面指南
智能体(Agents)是将大型语言模型与工具结合的系统,能够自主推理并执行复杂任务。基于LangGraph构建的图结构运行时环境,智能体通过ReAct模式交替进行推理和工具调用。核心组件包括:1)模型作为推理引擎,支持静态/动态配置;2)工具赋予行动能力,支持错误处理;3)系统提示塑造行为方式,可实现动态调整。调用时通过状态传递消息,支持流式输出。高级功能包括结构化输出策略,通过工具调用生成符合特定格式的结果。这种架构使智能体能够逐步解决复杂问题,并根据上下文灵活调整行为。
2026-01-08 21:18:33
1945
原创 LangChain入门精要
摘要: 本文系统介绍LangChain框架的核心组件与应用构建方法。首先解析三大核心构件:消息(结构化对话控制)、模型(统一LLM接口)和工具(外部功能调用),强调其协同工作机制。接着详细说明代理(Agent)的构建流程,包括决策-执行循环和主流代理类型(如zero-shot-react-description)。最后探讨记忆管理机制,通过对话历史实现上下文感知能力。全文贯穿实践指导,帮助开发者从基础组件逐步构建智能代理系统,实现复杂任务处理与状态维护。(149字)
2026-01-08 18:44:26
1515
原创 LLM擅长做什么?不擅长做什么?
任务类型擅长度典型成功率关键限制文本分类⭐⭐⭐⭐⭐95%+需要清晰类别定义内容生成⭐⭐⭐⭐⭐90%+可能缺乏深度洞察翻译⭐⭐⭐⭐90%+罕见语言对较弱常识问答⭐⭐⭐⭐85%罕见场景易错代码生成⭐⭐⭐⭐70-80%复杂逻辑易出错数学推理⭐⭐⭐60%多步骤快速下降精确计算⭐<10%本质不适合因果推理⭐⭐40%相关≠因果多步逻辑⭐⭐30-50%链条越长越差时效性⭐N/A知识截止限制擅长度↑100%│ ●文本生成。
2026-01-07 13:32:49
1015
原创 LLM的擅长与不擅长
理解并尊重这些边界,你就能与LLM建立高效、安全的合作关系,让它成为你强大的“副驾驶”,而不是一个可能出错的“自动驾驶仪”。单纯增加模型规模或数据量,无法从根本上解决这些问题,除非改变其架构范式(例如,与符号系统、外部工具相结合)。它的产出质量高,主要是因为人类已经创造了大量关于这些任务的优质文本范例供其学习。以下所有“擅长”的任务,本质上都是。:在这些任务上,LLM的表现是。:在这些任务上,LLM的失败是。以下所有“不擅长”,都源于其。
2026-01-07 13:27:49
974
原创 DDIA第四章 数据库存储引擎面试问题集
答案要点:数据存储位置不同:叶子节点连接:B+树的所有叶子节点通过双向链表连接,支持高效的范围查询B树的叶子节点是独立的,范围查询需要回溯到父节点查询性能稳定:空间利用率更高:更适合数据库索引:面试扩展:MySQL InnoDB使用B+树作为主键索引结构,非叶子节点存储键值,叶子节点存储完整行数据(聚簇索引)。答案要点:WAL定义:核心原理:关键作用:实现细节:检查点机制:面试扩展:对比WAL与Copy-on-Write(CoW)方式的区别,如SQLite的rollback jou
2026-01-06 17:51:04
1456
原创 DDIA第四章 数据库存储引擎与索引技术深度解析
本章节深入探讨数据库系统的核心底层机制——存储引擎和索引技术。理查德·费曼在开篇提出的"命名偏差"问题揭示了计算机系统中概念抽象与实际实现的差异,而数据库系统正是这种差异的典型体现。数据库的主要功能并非简单的算术计算,而是高效的数据归档与检索系统。本章从最基础的仅追加日志数据库实现出发,逐步深入到现代数据库系统中两种主流的存储引擎架构:日志结构合并树(LSM-Tree)和B树。随后扩展到分析型数据存储的列式存储技术,最后探讨多维索引、全文检索和向量嵌入等高级索引技术。
2026-01-06 17:41:35
1815
1
原创 DDIA(第二版)第4章:存储与检索
工作负载类型推荐存储引擎核心考量因素写入密集OLTP(如实时交易)LSM树(Cassandra、RocksDB)高写入吞吐量,容忍略高读取延迟读取密集OLTP(如用户查询)B树(MySQL InnoDB、PostgreSQL)读取响应稳定,支持复杂事务大规模分析(如数据仓库)列式存储(Snowflake、BigQuery)列存储+压缩+批量处理,减少I/O与CPU高级检索(地理/文本/语义)专用索引(PostGIS、Elasticsearch、向量数据库)
2026-01-06 17:35:51
1460
原创 DDIA第三章 数据模型:软件开发的基石与世界的边界
数据模型是软件开发的基石,不同模型适用于不同场景。关系模型适合规范化数据和复杂查询,文档模型对树形结构数据更高效,图模型擅长处理高度互联数据。数据仓库采用星型/雪花模式优化分析性能,事件溯源通过不可变事件日志提供审计追溯能力。数据框和数组模型则服务于数据科学和机器学习。现代系统趋向融合多种模型,架构师需根据数据特性、访问模式和一致性需求选择合适方案。核心原则是没有万能模型,需权衡读写性能、一致性和复杂度。
2026-01-06 14:33:46
952
原创 DDIA第二章 系统设计核心:性能、可靠性与扩展之道
在设计一个类似Twitter首页时间线的系统时,除了文中提到的“写时扇出”(Fan-out on Write)到粉丝时间线缓存的方法,还有一种“读时合并”(Fan-in on Read)策略,即用户读取时间线时,实时去查询其关注者的最新帖子并合并。p95响应时间表示95%的请求都比这个值快,它更能反映绝大多数用户的真实体验,并且能有效揭示那些影响少数用户但可能很严重的尾部延迟问题,这对于保障服务质量和制定SLO更具指导意义。的简化案例,生动地阐述了这些抽象概念在实际工程挑战中的体现。
2026-01-05 20:38:09
1368
原创 当数据的“实时”与“高效”狭路相逢,你会如何抉择?
本文对比分析了数据库中的普通视图与物化视图的核心差异与应用场景。普通视图是虚拟表,仅保存查询逻辑,提供实时数据但查询性能较低;物化视图则存储物理数据,以空间换时间提升查询效率,但存在数据延迟。文章通过问答形式阐述了二者在读写性能、一致性、维护成本等方面的权衡:普通视图适合低频查询且要求实时性的场景,物化视图则适用于读多写少的高并发复杂查询。最后指出视图选择本质是业务需求与系统效率的平衡艺术,并抛出了分布式环境下物化视图一致性维护的新思考。
2026-01-05 20:26:50
1695
原创 DDIA第二章: 数据密集型系统设计的非功能性需求
本文探讨数据密集型系统的非功能性需求设计,重点分析性能、可靠性、可伸缩性和可维护性四大核心指标。在性能方面,强调使用百分位数评估响应时间,并介绍过载防护策略;可靠性部分详细分类硬件、软件和人为故障的应对方案;可伸缩性对比了纵向扩展、共享磁盘和无共享三种架构;可维护性提出可运维性、简单性和可演化性三要素。文章通过社交网络时间线案例,展示了"以写换读"的优化思路,并补充了分布式系统设计的复杂性权衡思维。最后针对程序员面试提供了典型问题解答,如CAP定理在电商秒杀中的应用。全文系统性地阐述了构
2026-01-05 20:00:07
1509
原创 python3 同步转异步函数
asyncio.to_thread() 摘要 asyncio.to_thread() 是 Python 异步编程中用于在单独线程中运行阻塞同步函数的工具,避免阻塞事件循环。它将同步函数包装后放入线程池执行,保持异步程序的并发性。适用于处理同步库调用、文件操作和CPU密集型任务,但不能滥用,批量处理更高效。需注意GIL限制和错误处理,性能上比纯同步方式有明显优势。底层基于run_in_executor,可自定义线程池配置。
2026-01-05 11:09:59
3109
原创 Claude Agent SDK Python - 专业教学文档
本文介绍了Claude Agent SDK for Python的核心功能和用法。该SDK是Anthropic官方推出的Python工具包,支持两种交互模式:简单查询模式和双向会话模式。主要特性包括异步编程支持、文件系统工具集成、权限控制、MCP服务器支持等。文档详细说明了安装方法、系统要求、架构设计(包含Transport层、Query引擎等核心组件)以及基础使用方法,并提供了快速入门代码示例。适用于自动化脚本、开发工具、交互式应用等多种场景,支持Python 3.10+环境。
2026-01-04 14:10:53
3496
原创 Django流式响应
核心是通过生成器逐块返回数据,避免一次性加载大量数据到内存,适合大文件、实时数据场景。使用时需注意禁用缓冲(尤其是反向代理层),否则流式效果会失效。不同场景需配置对应的(如文件下载用,SSE 用。
2025-12-25 21:15:13
5774
原创 Python调用DeepSeek API查询ClickHouse
调用 DeepSeek API,并通过 MCP (Model Context Protocol) 协议接入,从而让 DeepSeek 能够查询 ClickHouse 数据库来回答用户问题。
2025-12-25 19:12:40
5856
原创 DDIA第一章:吃透数据系统架构的核心逻辑
我们常说“数据驱动业务”,但首先要分清两类核心应用:计算密集型和数据密集型,两者的核心挑战天差地别。计算密集型:核心瓶颈是算力,比如AI训练、科学计算,拼的是CPU/GPU性能;数据密集型:核心瓶颈是数据本身,比如电商、社交、支付系统,核心挑战是存储海量数据、保障数据一致性、应对高并发读写、实现系统高可用。数据库:持久化存储数据,保证后续可检索;缓存:记住昂贵操作结果,加速高频读取;搜索索引:支持关键字查询、复杂过滤,比如商品搜索;流处理:实时处理数据变更,比如订单创建后实时扣库存;
2025-12-25 19:11:31
5863
原创 DDIA第一章:吃透数据系统架构的核心逻辑
我们常说“数据驱动业务”,但首先要分清两类核心应用:计算密集型和数据密集型,两者的核心挑战天差地别。计算密集型:核心瓶颈是算力,比如AI训练、科学计算,拼的是CPU/GPU性能;数据密集型:核心瓶颈是数据本身,比如电商、社交、支付系统,核心挑战是存储海量数据、保障数据一致性、应对高并发读写、实现系统高可用。数据库:持久化存储数据,保证后续可检索;缓存:记住昂贵操作结果,加速高频读取;搜索索引:支持关键字查询、复杂过滤,比如商品搜索;流处理:实时处理数据变更,比如订单创建后实时扣库存;
2025-12-25 19:10:49
6205
原创 DDIA第一章:吃透数据系统架构的核心逻辑
我们常说“数据驱动业务”,但首先要分清两类核心应用:计算密集型和数据密集型,两者的核心挑战天差地别。计算密集型:核心瓶颈是算力,比如AI训练、科学计算,拼的是CPU/GPU性能;数据密集型:核心瓶颈是数据本身,比如电商、社交、支付系统,核心挑战是存储海量数据、保障数据一致性、应对高并发读写、实现系统高可用。数据库:持久化存储数据,保证后续可检索;缓存:记住昂贵操作结果,加速高频读取;搜索索引:支持关键字查询、复杂过滤,比如商品搜索;流处理:实时处理数据变更,比如订单创建后实时扣库存;
2025-12-24 13:38:14
6269
原创 DDIA第一章《数据系统架构中的权衡》
解释云原生数据库(如Snowflake、BigQuery)中"存储与计算分离"架构的优势和挑战。这个设计平衡了合规要求、成本效益和系统性能,通过分层的一致性模型和健壮的故障恢复机制,确保系统在各种异常情况下的可靠性。本章节是《数据密集型应用系统设计》的开篇,核心主旨在于阐述数据系统设计中不存在“银弹”或完美解决方案,所有技术决策都是。:在微服务架构中,每个服务都有自己的数据库。数据系统架构决策不应是一次性的,而应是持续演进的。:解释OLTP和OLAP的主要区别,并给出各自的两个典型应用场景。
2025-12-24 13:25:04
6323
原创 [ClaudeCode] MCP (Model Context Protocol) 工作原理详解
是 Claude Code 用于连接外部服务和工具的标准化协议。它定义了统一的接口,让 Claude 能够发现、调用和管理外部工具,就像使用内置工具一样自然。通俗理解: MCP 就像是 Claude Code 的"USB 接口",任何符合 MCP 标准的服务都可以"即插即用"。在命令行设置claude配置中使用"env": {},.env文件支持1. MCP 是标准化的工具协议├─ 工具发现├─ 统一命名2. 四种 Server 类型├─ stdio: 本地进程 (最低延迟)
2025-12-22 11:14:20
9373
原创 Claude Code IDE 集成工作原理详解
IDE 集成是指将 Claude Code 的能力嵌入到集成开发环境中,让开发者无需离开编辑器就能使用 Claude Code 的功能。传统工作流: IDE 集成工作流:│ 编写代码 │ │ 编写代码 │↓ ↓│ 切换终端 │ │ 快捷键 / 面板 ││ (Terminal) │ │ 直接调用 │↓ ↓│ 运行命令 │ │ Claude Code ││ Claude Code │ │ 集成在 IDE 中 │效率: ❌ 低 (上下文切换) 效率: ✅ 高 (无切换)
2025-12-22 11:13:35
9399
原创 Claude Code Hooks 系统详解
Hooks(钩子)是 Claude Code 的事件驱动安全机制,提供实时拦截和验证能力。它就像一个"安检系统",在关键操作发生前后进行监控和干预。通俗理解: Hooks 类似于游戏的"存档系统",在危险操作前提醒、阻止,在安全操作后记录和反馈。用户请求↓Claude 决策↓[PreToolUse Hook] ← 在这里拦截和验证↓[批准/修改/拒绝]↓执行工具↓[PostToolUse Hook] ← 在这里记录和审计↓返回结果Hookify。
2025-12-22 11:12:56
9172
原创 Claude Code Commands 教学文档
Commands(命令)是 Claude Code 中显式调用的自动化工作流,以/command格式触发。当你输入时,就是在调用一个 Command。核心作用封装重复性工作流: 将多步骤任务封装为单条命令标准化团队流程: 确保团队成员遵循一致的流程简化复杂操作: 将 10 个步骤的 Git 流程简化为 1 条命令提供交互式指导: 引导用户完成复杂任务。
2025-12-22 11:12:19
8672
原创 Claude Code 专业教学文档
是基于模型的智能化终端编程工具系统,其核心定位在于将自然语言处理能力与代码执行环境深度耦合,实现意图到执行的直接转换。// 工具标识符// 自然语言描述// 输入验证模式enum?: any[];items?properties?}>;: boolean;示例:Bash 工具定义},},"auth": {"token": "${API_TOKEN}", // 从环境变量读取},"tools": [},},import sysreturn {"id": 1,
2025-12-22 11:11:41
9177
原创 Claude Code 架构文档
Claude Code 是一个基于 AI 的终端工具,它将 Claude 的语言理解能力与代码执行环境深度集成,使开发者能够通过自然语言完成编程任务。Claude Code 不是简单地调用 API,而是一个完整的智能体系统。实现方式:系统根据查询复杂度自动调整智能水平:多层安全模型:系统每一步都可被监控和调试:插件系统架构:主执行循环 (Main Event Loop)核心代码模式(基于 MCP 协议):关键组件1. Session Manager职责: 管理用户会话生命周期状态存储:Ses
2025-12-22 11:09:37
8887
原创 Claude Code Agents 教学文档
Agents(智能体)是 Claude Code 中自主执行多步骤任务的专家向导,通过Task()工具调用。与同步执行的 Commands 不同,Agents 拥有独立的子进程和自主决策循环。核心特征独立进程: 运行在隔离的 Node.js 子进程中自主决策循环: 独立分析、规划、执行工具链专家系统: 每个 Agent 有专门的领域知识和指令工具白名单: 可选的工具访问限制。
2025-12-22 11:08:43
8791
原创 Claude Agent SDK 工作原理详解
是构建独立 AI Agent 应用的开发框架,它将 Claude Code 的核心能力封装为可编程接口。与 Claude Code CLI 不同,Agent SDK 是为开发者提供的代码级集成方案。├─ 交互式 CLI工具 ├─ 编程接口├─ 面向开发者 ├─ 面向开发者/程序├─ 插件系统 ├─ SDK + 自建插件├─ 预置 Agents 和 Commands ├─ 自定义 Agents 和 Tools└─ 不可嵌入 └─ 可嵌入到应用核心价值。
2025-12-22 11:07:56
9204
原创 Claude Code Skills 实用使用手册
每个对话都要重复提供背景信息Claude 无法持续学习你的习惯和要求项目规范难以统一执行上下文窗口很快被占满一次编写,重复使用Claude 自动提供专业指导团队规范统一执行智能加载,高效省资源。
2025-12-21 23:49:32
10357
原创 【Cloud Code】Skills
本章节聚焦Anthropic生态核心功能Skills与开发工具Cloud Code的落地实践,核心解决两大问题:一是通过Skills突破大模型“上下文局限”,实现专业化、定制化任务输出;二是针对国内用户面临的Anthropic模型访问限制,提供国产模型(如GLM)的适配方案。
2025-12-16 23:09:06
10992
C++学习资料, linux基本命令,
2023-12-06
画图/C环境/php/ssh远程连接
2023-11-16
gpt-music, afawefawegawgwa
2025-12-01
PDF Claude Code 完整使用教程:从入门到高级功能的全面指南.pdf
2025-11-30
智囊-真正的智慧并非有一套固定不变的原则可依循,而是对应着不同的现实难局,有恰如其分的不同时策 所以愚昧的人,偶而也会出现深具智慧的反应;倒是聪明的人往往因为太紧守着某些原则,遂做出错误的判断来
2025-03-24
远程软件,手机termux,扩展屏等
2024-10-14
开源的编程字体Menlo,Monaco,Mononoki,Ubuntu, source-code-pro
2024-02-05
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅