- 博客(696)
- 资源 (7)
- 收藏
- 关注
原创 国内大公司的大模型官网汇总
国内主要科技企业纷纷布局AI大模型领域,覆盖互联网、云计算及垂直行业。百度、阿里、腾讯等头部企业推出文心一言、通义千问、混元大模型等核心产品,华为、字节等厂商也上线盘古、豆包等模型。同时,云服务商搭建企业级开发平台如阿里百炼、百度千帆等,提供模型训练与部署服务。各厂商官网入口完整,形成从基础模型到行业应用的完整生态体系。(147字)
2025-11-18 10:29:47
105
原创 Claude模型综合分析
摘要: 2025年,Anthropic公司的Claude系列模型(包括Opus 4、Sonnet 4和Haiku 4.5)在AI领域展现出显著优势,尤其在编码能力(SWE-bench准确率超72%)、长文本处理(20万token上下文窗口)和多模态理解(视觉分析领先)方面表现突出。其核心技术包括Transformer混合专家架构和创新的Constitutional AI安全对齐机制(无害响应率98.76%)。新增的智能体工具和计算机操作功能进一步拓展了应用场景。与GPT、Gemini等竞品相比,Claude
2025-11-17 10:50:29
479
原创 数据再平衡
数据再平衡是分布式系统的关键机制,用于在节点变更或数据分布不均时重新分配数据,以达到负载均衡、提升性能和保证高可用性。核心目标包括优化资源使用、提高扩展性和容错能力。常见触发场景包括集群扩容/缩容、节点故障或数据倾斜。主流策略包括基于固定分片、一致性哈希和领导权转移的方法,各具优缺点。实际应用中需权衡性能开销、可用性影响和一致性保证等挑战。典型系统如Elasticsearch、HDFS和Kafka都采用不同再平衡方案,在自动化与资源消耗间寻求平衡,确保分布式系统高效稳定运行。
2025-11-11 10:04:07
1623
原创 分布式系统概要
摘要 分布式系统是现代计算技术的核心基础设施,由多个独立节点通过网络连接构成,具有分布性、对等性、并发性和透明性等特征。其理论基础包括CAP定理(一致性、可用性、分区容错性的权衡)、ACID原则(事务处理标准)和BASE理论(高可用性解决方案)。系统架构主要采用客户端-服务器模型和对等网络模式,面临网络分区、节点故障等核心挑战。分布式系统通过协调机制、通信协议和容错设计,为互联网、云计算等应用提供可靠支撑,在性能扩展和容错能力方面显著优于传统单机系统。
2025-11-10 18:34:15
1943
原创 【计算移动而非移动数据】
摘要:TiDB 采用计算存储分离架构,SQL解析和优化在计算层(TiDB Server)完成,数据存储在TiKV/TiFlash。计算层生成执行计划后向存储层发起请求获取数据,存储层节点(TiKV/TiFlash)通过Raft协议协调数据并返回结果,最终由计算层完成聚合等操作返回客户端。TiDB通过计算下推(Computation Pushdown)和协处理器(Coprocessor)技术实现高效数据过滤和聚合,减少网络传输,提升分布式查询性能。
2025-11-10 17:51:23
2038
原创 智能客户端缓存与一致性保障
本文介绍了智能客户端缓存技术,通过引入版本号校验机制解决性能与数据一致性的矛盾。方案核心是客户端发起轻量级验证请求,服务端仅比较版本号而非传输完整数据:若版本匹配则返回"未修改"状态,客户端复用缓存;若不匹配则返回最新数据。该方法具有强一致性、节省带宽、降低服务端负载以及对开发者透明的优势。文章还提供了Python代码模拟实现,展示了服务端与客户端交互的完整流程。
2025-11-10 11:41:26
1352
原创 TiDB分布式数据库技术架构概述
TiDB是一款开源的分布式NewSQL数据库,采用计算存储分离的三层架构:计算层(TiDB Server)、存储层(TiKV/TiFlash)和调度层(PD Server)。其核心技术包括:1)基于Percolator模型的分布式事务处理机制,通过两阶段提交实现ACID;2)TSO时间戳分配机制保证全局事务有序;3)MVCC多版本并发控制实现高效读写隔离;4)HTAP架构整合行式存储(TiKV)和列式存储(TiFlash),支持混合负载处理;5)分布式执行框架(DXF)实现资源统一调度。TiDB通过Raft
2025-11-07 15:50:02
1971
原创 【数据库】TiDB 技术选型与架构分析报告
TiDB是一款开源的分布式关系型数据库,由PingCAP公司研发,具备在线事务处理(OLTP)和在线分析处理(OLAP)的HTAP融合能力。其分层架构包括计算层(TiDB Server)、元数据管理层(PD)和存储层(TiKV),支持水平扩展、自动分片和负载均衡。TiDB基于Percolator模型实现分布式事务,提供快照隔离和MVCC机制,兼容MySQL协议与生态。通过TiKV(行存储)和TiFlash(列存储)的协同,TiDB实现了HTAP能力,支持实时分析。该数据库具备金融级高可用性,支持云原生部署与
2025-11-07 15:39:15
1857
原创 Linux 逻辑卷(磁盘自动扩容)
Linux 逻辑卷(LV)与自动扩容方案 逻辑卷(LV)概述: Linux逻辑卷是LVM管理的虚拟存储单元,相比传统分区具有动态扩容、跨设备存储、快照备份等优势。通过物理卷(PV)、卷组(VG)、逻辑卷(LV)三层架构实现灵活存储管理。 自动扩容实现方案: 前提条件:需使用LVM管理分区,且VG中有可用空间 扩容流程: 添加物理磁盘并加入卷组 扩展逻辑卷和文件系统 自动化脚本:通过cron定时检测磁盘使用率,超过阈值时自动执行扩容 云环境方案:结合云平台API实现磁盘扩容和分区调整 重要结论: 完全自动添加
2025-11-07 14:13:51
1837
原创 21 世纪人类重大挑战
进入 21 世纪以来,人类社会面临着前所未有的复合型挑战。气候变化加剧、技术伦理困境凸显、社会不平等深化、公共卫生危机频发,这些挑战相互交织、彼此强化,对全球可持续发展构成了根本性威胁。特别是 2020 年以来,COVID-19 疫情的全球大流行更是深刻揭示了人类社会在面对重大危机时的脆弱性和应对能力的不足。当前,全球气候系统正处于。世界气象组织(WMO)确认,2024 年是有记录以来最热的一年,全球平均近地表温度比工业化前水平高出,首次突破《巴黎协定》设定的 1.5°C 温控目标。
2025-11-07 12:55:48
1958
原创 人类的进化历程
摘要 人类进化历经700万年,从非洲古猿到现代智人,经历了多次关键转变。早期人族如撒海尔人(700万年前)已能直立行走,南方古猿(420万年前)则适应了双足行走。约280万年前,人属出现,直立人率先走出非洲,掌握了用火技术。中更新世时期(70万年前),海德堡人、尼安德特人(40万年前灭绝)和丹尼索瓦人(4万年前灭绝)相继演化,后者与现代智人存在基因交流。现代智人约30万年前起源于非洲,6万年前大规模迁移至全球,凭借发达的大脑和工具技术成为唯一幸存的人类物种。这一历程展现了人类通过智慧与适应力克服环境挑战的非
2025-11-07 12:46:51
2131
原创 科技发展、人类贪欲与文明存续
人工智能正在以前所未有的速度发展,可能在未来10-20年内实现通用人工智能(AGI),这既带来机遇也潜藏危机。研究显示,技术进步与人类贪欲形成了螺旋式膨胀:AI算法精准分析用户偏好,不断创造并满足新欲望;社交媒体等数字产品通过刺激多巴胺分泌,导致行为成瘾;基因编辑技术更让"定制完美生命"成为可能。这种欲望扩张机制正在改变人类需求结构,甚至可能威胁文明存续。文章通过多学科视角,探讨了科技发展与人类欲望的相互作用,分析AI可能导致的文明毁灭路径,并对未来100-500年的人类命运进行预测,试
2025-11-07 12:44:31
1782
原创 工业革命与工作时长演变
技术进步与工作时长的复杂关系技术进步对工作时长的影响呈现出非线性和非单向的特征。虽然技术进步极大地提高了生产效率,但并未自动带来工作时间的减少。相反,在特定条件下,技术进步可能通过以下机制延长工作时间:创造新的工作任务和岗位需求提高工作强度和复杂性模糊工作与生活的界限加剧社会竞争和地位焦虑全球工作时长的分化趋势从全球视角看,工作时长演变经历了 “统一缩短→分化加剧” 的过程:19 世纪末到 20 世纪中期:全球工作时间普遍缩短,8 小时工作制成为主流20 世纪后期至今:不同地区出现明显分化。
2025-11-07 12:22:34
2249
原创 【Django】基础1(万字讲解)
本章带领大家在本地快速搭建 Django 3.2 运行环境,理解 Django 的 MVT 架构与两种主流开发模式(前后端分离 / 不分离),为后续项目实战与源码阅读打下基础。内容侧重“能跑起来 + 能看明白”,面试常问“Django 生命周期、MVT 与 MVC 区别、分离与不分离的取舍”,均需从本讲引申。数据流(面试口述版):2.4 开发模式对比维度不分离(传统 SSR)分离(SPA + RESTful)页面渲染Django TemplateVue/React/Angula
2025-11-04 01:08:42
3740
原创 Django `select_related` 查询优化
本文介绍了Django ORM中的N+1查询问题及其解决方案。当通过外键访问关联对象时,未优化的查询会导致执行N+1次数据库查询,严重影响性能。使用select_related可以通过JOIN操作一次性获取关联数据,将查询次数优化为1次。文章详细讲解了select_related的基本用法、深度关联查询(使用双下划线语法)以及查看生成SQL的方法,并提供了最佳实践建议:仅当确实需要访问关联对象字段时才使用select_related,避免过度使用和深度关联导致性能下降。最后通过对比表总结了普通查询与优化查询
2025-10-28 15:45:56
4820
原创 django model Manager
Django Manager 是 ORM 的核心数据库操作接口,每个模型默认带有 objects 管理器。它的核心功能包括:1) 通过 get_queryset() 定义默认查询范围;2) 添加自定义查询方法;3) 结合 QuerySet 实现链式调用。开发者可以创建多个管理器实现不同业务逻辑(如软删除、状态过滤),推荐将复杂查询封装在自定义 QuerySet 中。Manager 广泛应用于 admin、views 等场景,能有效集中数据库操作逻辑,提升代码复用性和可维护性。
2025-10-28 14:54:20
4894
原创 2020 年以来编程语言与框架发展调研报告
编程语言与框架生态发展报告(2020-2025) 本报告系统分析了2020-2025年编程语言与框架生态的发展趋势。研究显示,AI驱动的语义协同编程成为新阶段特征,GitHub Copilot等工具显著提升开发效率。前端领域呈现多极化竞争,React、Vue、Angular持续迭代,Svelte凭借性能优势崛起。后端开发向云原生转型,Go语言在微服务领域表现突出。移动开发形成Flutter、React Native和原生开发三足鼎立格局。AI/ML领域PyTorch和TensorFlow持续领跑,PyTor
2025-10-28 10:21:28
5091
原创 2025 年 10 月下旬全球科技金融热点新闻 TOP10 分析报告
2025年10月,全球科技与金融领域迎来重大变革。科技方面,英伟达与OpenAI达成千亿美元合作,将建设10吉瓦AI数据中心;谷歌量子计算实现突破,运算速度超经典计算机1.3万倍;OpenAI收购Software Applications,强化桌面AI应用;固态电池技术取得产业化进展,能量密度提升60%。金融领域,RWA链上资产规模激增至210亿美元,美联储降息预期强烈,市场预期概率超96%。这些进展将重塑产业格局,加速技术商业化进程,并对全球经济产生深远影响。
2025-10-28 10:11:57
7289
原创 Django 表单验证详解Form
Django表单验证机制通过cleaned_data、clean()和clean_xxx()方法确保数据安全和完整性。cleaned_data存储验证后的数据,必须先调用is_valid()才能访问。clean_xxx()方法用于单字段验证和数据处理,如格式检查和唯一性验证。clean()方法处理多字段间的复杂验证逻辑,如日期范围和业务规则检查。这些验证方法可以抛出ValidationError来报告错误,支持字段级和表单级错误处理。实战中常用于用户注册、密码修改等场景,通过组合使用这些方法实现全面的数据验
2025-10-23 11:27:58
6449
原创 Andrej Karpathy 演讲【PyTorch at Tesla】
特斯拉在2019年首次公开纯视觉自动驾驶技术,基于PyTorch构建了HydraNets多任务架构,实现8摄像头视觉感知、100+并行任务处理和FSD芯片高效部署。该方案采用共享主干网络+多头输出的设计,通过分布式训练(70,000 GPU小时)处理10亿英里数据,并利用Transformer进行BEV空间建模。PyTorch的动态计算图特性支撑了快速迭代,而垂直整合模式实现了硬件-软件-数据的全栈优化。这一技术路线展示了纯视觉方案可行性,为自动驾驶AI工业化落地提供了范本,但也面临训练成本高、实时性要求等
2025-10-22 12:46:42
6793
原创 大语言模型科普报告
摘要:大语言模型技术解析与应用展望 大语言模型(LLM)作为人工智能领域的重要突破,通过海量文本数据训练和Transformer架构,展现出强大的语言理解和生成能力。其核心特征包括庞大的参数规模(数十亿至数千亿)、基于自注意力机制的多头注意力处理,以及多阶段训练流程(预训练、微调、RLHF)。当前主流模型如GPT-4、Gemini、Llama等已广泛应用于聊天机器人、内容生成、研究协助等领域。未来发展趋势包括参数规模持续扩大、训练方法优化(如PEFT技术降低微调成本)以及多模态能力增强。这项技术正在深刻改变
2025-10-21 14:22:51
7052
原创 论“熟练”:一种最深刻的内在成瘾机制
摘要: 本文揭示熟练度是人类最持久的成瘾机制。真正的沉迷源于内在奖赏系统(心流、掌控感、正反馈循环),而非初始兴趣。然而,多数人因无法跨越高阻力、低回报的"生涩期"而放弃,误将过程性困难归因为"不适合"。突破需规避三大陷阱:完美主义、广度幻觉和反馈缺失,核心在于结构化重复——通过足量练习将显意识操作转化为潜意识本能。最终,熟练者实现从"坚持"到"渴望"的蜕变,并获得可迁移的"元自信"。结论指向朴素的行动哲学:
2025-10-21 12:16:49
6757
原创 什么是AgentKit
OpenAI推出AgentKit,加速企业智能体开发 2025年10月,OpenAI发布AgentKit工具集,帮助企业快速构建、部署和优化智能体(Agents)。该工具集包含三大核心组件: Agent Builder(测试版):可视化拖拽界面,支持多智能体工作流设计,案例显示Ramp公司仅用数小时完成采购智能体开发; Connector Registry(限量测试):集中管理企业数据连接,支持Dropbox等预置工具集成; Chat Kit(正式版):可1小时内嵌入定制化聊天界面,Canva借此节省2周开
2025-10-20 12:50:11
6683
原创 WebDAV 服务搭建指南
本文提供在 Ubuntu 20.04 服务器上搭建安全稳定 WebDAV 服务的两种方案:原生部署和 Docker 容器部署。· HTTP: http://服务器IP/webdav(原生)或 http://服务器IP:端口(Docker)· messense/aliyundrive-webdav - 阿里云盘转 WebDAV。选择建议:个人使用推荐 Docker 方案,企业生产环境可考虑原生部署以获得更好性能。Docker部署 快速部署、隔离性好 轻微性能损耗 测试环境、快速部署。· 隐藏服务器版本信息。
2025-10-20 12:09:30
6341
原创 网络故障案例:运营商 DNS 解析异常导致大面积访问故障
2025年8月12日,国内某运营商DNS服务出现解析异常,导致全国范围域名解析错误。用户访问主流网站时出现解析失败、域名劫持等问题,而使用自建DNS或HTTPS DNS(DoH)的服务未受影响。故障主因是运营商Local DNS解析异常,暴露了传统DNS使用明文UDP协议、缺乏加密认证的缺陷。建议采用HTTPS DNS(DoH)或HTTPDNS等加密方案,通过TLS加密传输和证书验证,避免运营商DNS单点依赖风险。根本上应构建去中心化DNS体系,推广加密DNS技术,提升网络访问稳定性和安全性。
2025-10-17 15:11:31
8578
原创 【AI】Embedding 从入门到实战「嵌入表示」向量
Embedding(嵌入表示)是一种将文本、图像等数据映射为稠密向量的技术,使语义相近的内容在高维空间中距离更近。相比传统方法(如词频统计),它能捕捉更丰富的语义关系。主流模型包括Word2Vec(静态词向量)、BERT(上下文相关)和SBERT(句向量),训练方式多采用对比学习。实现分为本地部署(如SentenceTransformer)和云端API(如OpenAI),前者可控性强但需资源,后者便捷但依赖网络。BGE系列是新一代高性能开源模型,支持多语言和多功能任务。Embedding广泛应用于语义检索、
2025-10-16 14:11:43
8098
原创 ClickHouse 数据更新策略深度解析:突变操作与最佳实践
ClickHouse的突变操作(Mutation)是用于数据更新和删除的异步后台机制,通过重写整个数据部分实现。由于ClickHouse的列式存储设计,突变是重量级操作,会带来高I/O、CPU开销和潜在性能影响。为高效处理数据更新,建议选择适合的表引擎: ReplacingMergeTree:适用于去重和最终一致性更新,通过插入新行并在合并时保留最新版本。 CollapsingMergeTree:通过符号标记状态变化,适合可变数据(如库存)。 最佳实践包括批量操作、利用分区剪枝、监控突变状态,并避免高峰期执
2025-10-16 10:38:51
8316
2
原创 Chroma 开源的 AI 应用搜索与检索数据库(即向量数据库)
Chroma是一款开源AI向量数据库,支持Python和JavaScript快速构建带记忆功能的LLM应用,核心API仅4个函数,操作简洁。它具备简单易用、多工具集成、多场景支持等特性,提供本地部署和Chroma Cloud托管服务(含30秒创建数据库和5美元免费额度)。默认使用Sentence Transformers生成嵌入向量,也支持OpenAI、Cohere及自定义嵌入,适用于"基于数据对话"等场景。 主要功能包括: 核心API:初始化客户端、集合操作、文档操作和查询操作 部署方
2025-10-15 23:58:22
8256
原创 大模型嵌入 vs ES:语义搜索与关键字搜索
摘要: 大模型嵌入(Embedding)和Elasticsearch(ES)的核心区别在于搜索方式:Embedding通过向量化实现语义搜索,适合上下文理解;ES基于倒排索引擅长关键字匹配和结构化查询。Embedding优势是语义识别(如近义词匹配),但维护成本高;ES查询高效但缺乏语义理解。实际应用中,两者常结合使用(Hybrid Search)——用Embedding召回语义相关结果,再用ES进行关键词加权或过滤,兼顾语义与效率。适用场景:语义搜索/问答推荐Embedding,带过滤的复杂查询选ES,混
2025-10-15 19:18:09
7833
原创 大模型如何接入知识库?RAG
摘要: 知识库接入(RAG)通过检索增强生成技术扩展大语言模型的知识边界。核心流程分为知识库构建和查询两阶段:文档收集、语义切片、向量化存储后,用户提问通过向量相似度检索匹配知识片段,再结合上下文生成回答。典型技术栈包括OpenAI/BGE等向量模型、Milvus/Qdrant等向量数据库,配合LangChain等框架实现。代码示例展示从向量库检索到GPT-4生成答案的完整链路,本质是"先检索后回答"的增强范式,有效解决模型实时性不足和私有领域知识缺失问题。(150字)
2025-10-15 19:08:22
7998
原创 介绍近期github上有名的开源项目
GitHub高星AI/LLM相关项目精选(部分项目星数>10k) AutoGPT (166k+⭐):自主AI系统,基于GPT-4实现任务自动化 Transformers (131k+⭐):Hugging Face的多模态模型库 LangChain (91k+⭐):LLM应用开发框架 Dify (110k⭐):可视化LLM应用开发平台 Lobe Chat (64k⭐):多模态聊天应用平台 RAGFlow (62k⭐):文档驱动的RAG引擎 MetaGPT (58k⭐):多智能体协作框架 AgentGPT
2025-10-15 16:41:19
8985
1
原创 微软AutoGen:多智能体AI开发新利器
AutoGen 框架核心功能与实战示例 框架概述 微软 AutoGen 是一个多智能体协作开发框架,支持: Python 和 .NET 双生态 智能体间自主通信与任务协调 工具调用与代码执行扩展 可视化开发工具 AutoGen Studio 核心实战场景 1. 代码执行工具 executor = LocalCommandLineCodeExecutor(work_dir="coding") tool = PythonCodeExecutionTool(executor=executor) agent = A
2025-10-15 15:25:54
8314
原创 谷歌《智能体 Agent》白皮书
摘要:Agent技术通过"模型+工具+协调层"架构突破传统大语言模型的静态限制,实现动态推理与外部交互。核心包含认知架构三组件(20%面试高频)、三大工具类型(扩展/函数/数据存储)及ReAct/CoT/ToT推理框架(35%技术重点)。典型开发流程覆盖输入解析→任务规划→工具调用→执行反馈→记忆优化五大阶段,其中RAG技术无需微调即可更新知识。LangChain提供快速原型验证,支持多工具协同与状态管理(代码示例占比25%)。生产部署需关注扩展API调用安全性与矢量数据库优化(15%工
2025-10-15 15:07:17
8411
原创 Claude Agent构建指南
本文基于Anthropic官方《Agent构建指南》,系统阐述了LLM智能体(Agent)的开发原则与实践方法。核心观点强调"简单有效"的设计理念,避免过度复杂化。文章首先区分了Agent与工作流的本质差异:前者由LLM动态决策,适用于开放任务;后者基于预定义路径,适合固定流程。在应用决策上,提出需同时满足任务不可预测、需模型驱动决策且价值高于成本三个条件才使用Agent。技术实现层面,建议优先直接调用LLM API而非框架,以增强可调试性;同时详细解析了增强型LLM的三大核心能力(检索
2025-10-15 14:19:43
8371
原创 当机器能“自主规划”时,我们究竟在构建什么?
《Claude Agent构建指南》揭示了从工具到智能体的进化本质:工作流与Agent的关键区别在于自主决策能力,而非复杂程度。指南强调"简单优先"原则,反对技术复杂化倾向,指出真正的智能体现在"用恰当方法解决问题"而非"用最复杂方法"。核心在于构建人机协作的平衡关系 - 人类设定目标,机器自主规划路径,通过增强型LLM的检索、工具使用和记忆三大能力实现从"能说"到"能做"的跨越。这份指南不仅是技术手册,更是
2025-10-15 14:11:25
7793
原创 LiteLLM:让LLM调用变得简单统一
LiteLLM是一个统一接口工具,支持调用100多种大型语言模型(如OpenAI、Azure、Anthropic等),简化了不同模型间的开发差异。其核心功能包括:1)标准化调用接口,兼容多种模型;2)支持流式响应和函数调用;3)提供代理服务器简化部署;4)集成LangChain等框架;5)具备模型路由和故障转移能力;6)内置成本监控和日志跟踪。适用于聊天机器人、内容生成等AI应用开发,显著提升开发效率并降低维护成本。通过统一API和丰富的企业级功能,LiteLLM帮助开发者快速构建稳定的LLM应用。
2025-10-15 13:59:48
7790
原创 8000行代码复刻ChatGPT,学习和理解大语言模型的完整训练流程
前特斯拉AI总监Karpathy推出开源项目nanochat,仅用约8000行代码完整复现ChatGPT训练流程。项目支持从分词器训练到强化学习微调的全过程,用户仅需单GPU、4小时和100美元即可训练出具备基础对话能力的小型语言模型。采用Rust实现高效分词器,基于Transformer架构,通过FineWeb等数据集进行预训练和微调,并支持KV缓存推理和WebUI交互。该项目代码精简、文档完善,是学习大语言模型训练的优秀教育资源。
2025-10-15 13:48:05
7843
原创 三层前馈神经网络实战:MNIST手写数字识别
PyTorch实现MNIST手写数字识别 本文详细介绍了基于PyTorch的三层前馈神经网络实现MNIST手写数字识别的完整流程。主要内容包括: 网络结构设计:输入层(784维)、隐藏层(256维)和输出层(10维)的构建,使用ReLU激活函数和Softmax输出。 数据处理流程:MNIST数据集的加载、预处理(灰度转换和归一化)以及批量读取(DataLoader实现)。 模型训练三要素:模型(Network类)、优化器(Adam)和损失函数(CrossEntropyLoss)的选择与实现。 训练流程:详细
2025-10-14 15:16:17
8293
原创 大语言模型推理本质与技术演进
本文系统解析了大语言模型(LLM)推理能力的本质与关键技术。核心观点认为LLM推理是"中间步骤生成"而非哲学思考,可通过工程手段优化。重点介绍了思维链提示(CoT)及其两种实现方式(少样本/零样本),对比了贪婪解码与思维链解码的差异。自洽性技术通过多路径投票显著提升结果可靠性(GSM8K准确率提升17%)。研究比较了监督微调与强化学习微调的优劣,指出RLFT是提升泛化能力的关键范式。此外,还探讨了检索增强推理、工具增强等扩展技术,并以金融问答系统为例展示了RAG+自洽性的实践方案。最后总
2025-10-14 14:47:47
8294
原创 【AI】Agno框架:多代理智能体快速上手指南
Agno是一个高性能的多智能体框架,集成了运行时环境和UI界面,用于构建具备记忆、知识检索、工具调用和人机交互能力的智能体系统。其核心设计强调高性能(微秒级实例化)、模型无关性(支持多模态输入输出和任意模型提供商)以及模块化组合(工具、记忆、知识等组件可插拔)。Agno支持将多个智能体组织为团队或工作流,通过AgentOS运行时实现私有化部署和可视化监控。典型应用场景包括检索增强生成(RAG)、复杂任务分解和跨智能体协作。该框架采用Python原生接口,兼顾开发灵活性和执行效率,适用于需要自主AI代理的私有
2025-10-13 15:40:30
8409
C++学习资料, linux基本命令,
2023-12-06
画图/C环境/php/ssh远程连接
2023-11-16
智囊-真正的智慧并非有一套固定不变的原则可依循,而是对应着不同的现实难局,有恰如其分的不同时策 所以愚昧的人,偶而也会出现深具智慧的反应;倒是聪明的人往往因为太紧守着某些原则,遂做出错误的判断来
2025-03-24
远程软件,手机termux,扩展屏等
2024-10-14
开源的编程字体Menlo,Monaco,Mononoki,Ubuntu, source-code-pro
2024-02-05
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅