矩阵置零

矩阵置零

题目描述:

给定一个 m x n 的矩阵,如果一个元素为 0 ,则将其所在行和列的所有元素都设为 0 。请使用 原地 算法。

进阶:

一个直观的解决方案是使用 O(mn) 的额外空间,但这并不是一个好的解决方案。
一个简单的改进方案是使用 O(m + n) 的额外空间,但这仍然不是最好的解决方案。
你能想出一个仅使用常量空间的解决方案吗?
示例 1:
在这里插入图片描述
输入:matrix = [[1,1,1],[1,0,1],[1,1,1]]
输出:[[1,0,1],[0,0,0],[1,0,1]]

示例 2:
在这里插入图片描述
输入:matrix = [[0,1,2,0],[3,4,5,2],[1,3,1,5]]
输出:[[0,0,0,0],[0,4,5,0],[0,3,1,0]]

思路:这道题难点在于O(1)的空间复杂度。先判断首行首列是否存在0(使用两个变量),然后从(1,1)到(m-1,n-1)进行遍历,将碰到的0对应的首行首列标记为0。在根据首行首列的0,将首行的0对应列置0,首列类似。最后根据两个变量的值,判断是否需要将首行首列置0。

代码:

class Solution {
    public void setZeroes(int[][] matrix) {
        int m = matrix.length;
        int n = matrix[0].length;
        int flag = 0 ,flag2=0;
        /*
        1.判断首行有无0
        2.判断首列有无0
        3.从(1,1)遍历到(m-1,n-1) 
        matrix[i][j] 如果为0 则将matrix[i][0] matrix[0][j] 标记为0
        4.判断首行的0 将其对应的一列变为0
        5.判断首列的0,将其对应的一行变为0
        6.判断最初的首行、首列有无0
        */
        //1.判断首行有无0
        for(int j=1 ;j<n;j++){
            if(matrix[0][j] == 0) flag=1;
        }
        //2.判断首列有无0
        for(int i=1;i<m;i++){
            if(matrix[i][0] == 0) flag2=1;
        }
        if(matrix[0][0] == 0 ) {
            flag2=1;flag=1;
        }
        //从(1,1)遍历到(m-1,n-1) 
        //matrix[i][j] 如果为0 则将matrix[i][0] matrix[0][j] 标记为0
        for(int i=1;i<m;i++){
            for(int j=1;j<n;j++){
                if(matrix[i][j] == 0) {
                    matrix[i][0]=0;
                    matrix[0][j]=0;
                }
            }
        }
        //4.判断首行的0 将其对应的一列变为0
         for(int j=1 ;j<n;j++){
            if(matrix[0][j] == 0) {
                for(int i=1;i<m;i++){
                    matrix[i][j]=0;
                }
            }
        }
        //5.判断首列的0,将其对应的一行变为0
         for(int i=1;i<m;i++){
            if(matrix[i][0] == 0) {
                 for(int j=1;j<n;j++){
                    matrix[i][j]=0;
                }
            }
        }
        //6.判断最初的首行、首列有无0
        if(flag == 1){
            for(int j= 0;j<n;j++) matrix[0][j]=0;
        }
        if(flag2 == 1){
            for(int i= 0;i<m;i++) matrix[i][0]=0;
        }
    }
}

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/set-matrix-zeroes

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值