什么是Spring Cloud Stream
Spring Cloud Stream 是 Spring 生态系统中的一个框架,用于简化构建消息驱动微服务的开发和集成。它通过抽象化的方式将消息中间件(如 RabbitMQ、Kafka、RocketMQ 等)的复杂通信逻辑封装成简单的编程模型,使开发者能够专注于业务逻辑,而无需过多关注底层消息系统的实现细节。
详细解释
这里是官网代码中推出的解释:
Spring Cloud Stream 提供了消息中间件配置的统一抽象,推出了 publish-subscribe、consumer groups、partition 这些统一的概念。
Spring Cloud Stream 内部有两个概念:Binder 和 Binding。
Binder: 跟外部消息中间件集成的组件,用来创建 Binding,各消息中间件都有自己的 Binder 实现。
比如 Kafka 的实现 KafkaMessageChannelBinder,RabbitMQ 的实现 RabbitMessageChannelBinder 以及 RocketMQ 的实现 RocketMQMessageChannelBinder。
Binding: 包括 Input Binding 和 Output Binding。
Binding 在消息中间件与应用程序提供的 Provider 和 Consumer 之间提供了一个桥梁,实现了开发者只需使用应用程序的 Provider 或 Consumer 生产或消费数据即可,屏蔽了开发者与底层消息中间件的接触。
总结:
Binder:解决“用什么消息中间件”的问题(如 Kafka vs RabbitMQ)。
Binding:解决“消息从哪里来、到哪里去”的问题(如 Topic 名称、消费者组)。
协作关系:
下图是 Spring Cloud Stream 的架构设计。
+-------------------+ +-------------------+
| Application | | Application |
| (Microservice) | | (Microservice) |
+-------------------+ +-------------------+
| |
| Output Binding (Producer) | Input Binding (Consumer)
↓ ↓
+--------------------------------------------------+
| Binder (抽象层) |
| (Kafka/RabbitMQ/RocketMQ 的适配实现) |
+--------------------------------------------------+
| |
↓ ↓
+-------------------+ +-------------------+
| Message Broker | | Message Broker |
| (e.g., Kafka) | | (e.g., RabbitMQ) |
+-------------------+ +-------------------+
业务代码 → Binding(定义通道) → Binder(连接中间件) → 消息中间件
根据官网文档,集成了下面这些消息中间件或者流事件平台。这里用rokectMQ举例
使用说明
下载github中的rocketMQ代码
1.首先点开下面github中的RocketMQ示例代码
直接下载全部 直接看examples
下载代码,可以看见很多示例,下面以(orderly 顺序消息)说明
这里他直接在启动类中简单实现了生产数据和消费数据的代码
并且带有说明 见readme
代码说明(orderly顺序消费)
@SpringBootApplication
public class RocketMQOrderlyConsumeApplication {
private static final Logger log = LoggerFactory
.getLogger(RocketMQOrderlyConsumeApplication.class);
@Autowired
private StreamBridge streamBridge;
/***
* tag array.
*/
public static final String[] tags = new String[] {"TagA", "TagB", "TagC", "TagD", "TagE"};
public static void main(String[] args) {
SpringApplication.run(RocketMQOrderlyConsumeApplication.class, args);
}
@Bean
public ApplicationRunner producer() {
return args -> {
for (int i = 0; i < 100; i++) {
String key = "KEY" + i;
Map<String, Object> headers = new HashMap<>();
headers.put(MessageConst.PROPERTY_KEYS, key);
headers.put(MessageConst.PROPERTY_TAGS, tags[i % tags.length]);
headers.put(MessageConst.PROPERTY_ORIGIN_MESSAGE_ID, i);
Message<SimpleMsg> msg = new GenericMessage(new SimpleMsg("Hello RocketMQ " + i), headers);
streamBridge.send("producer-out-0", msg);
}
};
}
@Bean
public Consumer<Message<SimpleMsg>> consumer() {
return msg -> {
String tagHeaderKey = RocketMQMessageConverterSupport.toRocketHeaderKey(
MessageConst.PROPERTY_TAGS).toString();
log.info(Thread.currentThread().getName() + " Receive New Messages: " + msg.getPayload().getMsg() + " TAG:" +
msg.getHeaders().get(tagHeaderKey).toString());
try {
Thread.sleep(100);
}
catch (InterruptedException ignored) {
}
};
}
}
配置文件
server:
port: 28082
spring:
application:
name: rocketmq-orderly-consume-example
cloud:
stream:
function:
definition: consumer;
rocketmq:
binder:
name-server: localhost:9876
bindings:
producer-out-0:
producer:
group: output_1
messageQueueSelector: orderlyMessageQueueSelector
consumer-in-0:
consumer:
# tag: {@code tag1||tag2||tag3 }; sql: {@code 'color'='blue' AND 'price'>100 } .
subscription: 'TagA || TagC || TagD'
push:
orderly: true
bindings:
producer-out-0:
destination: orderly
consumer-in-0:
destination: orderly
group: orderly-consumer
logging:
level:
org.springframework.context.support: debug
配置文件解释
主要配置
绑定服务器
rocketmq:
binder:
name-server: localhost:9876 //RocketMQ 的 NameServer 地址为 localhost:9876,用于获取 Broker 路由信息。意思是这里只有一个broker,并不是集群配置
生产者消费者配置
bindings:
producer-out-0:
producer:
group: output_1 //生产者组:生产者组名为 output_1,用于事务消息或消息查询。
messageQueueSelector: orderlyMessageQueueSelector //队列选择器:使用自定义的 orderlyMessageQueueSelector 选择消息队列,确保相同业务标识的消息发往同一队列,实现顺序性。
consumer-in-0:
consumer:
subscription: 'TagA || TagC || TagD'//订阅过滤:使用 Tag 过滤,订阅包含 TagA、TagC 或 TagD 的消息(逻辑或)。
push:
orderly: true//顺序消费:push.orderly: true 启用顺序消费模式,按队列顺序单线程处理消息。
生产者消费者绑定组和目的地
bindings:
producer-out-0:
destination: orderly //生产者目的地:生产者发送至 Topic 为 orderly。
consumer-in-0:
destination: orderly
group: orderly-consumer //消费者组:消费者组名为 orderly-consumer,相同组内消费者分摊消费队列,不同组独立消费。
producer
这里逻辑很简单,就循环发送了100条数据,顺序发送给不同的tags,组装成了Message对象,然后通过streamBridge发送到producer-out-0的通道
@Bean
public ApplicationRunner producer() {
return args -> {
for (int i = 0; i < 100; i++) {
String key = "KEY" + i;
// 设置 RocketMQ 消息头
Map<String, Object> headers = new HashMap<>();
headers.put(MessageConst.PROPERTY_KEYS, key); // 消息的唯一标识(RocketMQ 的 KEY)
headers.put(MessageConst.PROPERTY_TAGS, tags[i % tags.length]); // 消息的 Tag(按 tags 数组循环分配)
headers.put(MessageConst.PROPERTY_ORIGIN_MESSAGE_ID, i); // 自定义原始消息ID(可选)
// 创建消息对象:包含 payload 和 headers
Message<SimpleMsg> msg = new GenericMessage<>(new SimpleMsg("Hello RocketMQ " + i), headers);
// 发送消息到名为 "producer-out-0" 的输出通道
streamBridge.send("producer-out-0", msg);
}
};
}
selector(供生产者使用)
OrderlyMessageQueueSelector 的作用是 供生产者使用的,用于在发送顺序消息时选择特定的消息队列(MessageQueue),确保同一业务逻辑的消息被发送到同一个队列中,从而保证消费者能够按顺序消费。
@Component
public class OrderlyMessageQueueSelector implements MessageQueueSelector {
private static final Logger log = LoggerFactory
.getLogger(OrderlyMessageQueueSelector.class);
/**
* to select a fixed queue by id.
* @param mqs all message queues of this topic.//当前主题(Topic)下的所有队列
* @param msg mq message.//这是即将被消费的消息对象。它包含了消息的内容、属性和一些元数据。
* @param arg mq arguments.//这个参数是消费者传入的自定义参数,通常用来携带一些额外的信息。
* @return message queue selected.
*/
@Override
public MessageQueue select(List<MessageQueue> mqs, Message msg, Object arg) {
Integer id = (Integer) ((MessageHeaders) arg).get(MessageConst.PROPERTY_ORIGIN_MESSAGE_ID);
int index = id % RocketMQOrderlyConsumeApplication.tags.length % mqs.size(); //id%5%队列长度
return mqs.get(index);
}
}
consumer
1.每个队列由独立线程顺序消费。
2.同一队列中的消息按发送顺序处理,不同队列的消息可能并行处理。
@Bean
public Consumer<Message<SimpleMsg>> consumer() {
return msg -> {
String tagHeaderKey = RocketMQMessageConverterSupport.toRocketHeaderKey(
MessageConst.PROPERTY_TAGS).toString();
log.info(Thread.currentThread().getName() + " Receive New Messages: " + msg.getPayload().getMsg() + " TAG:" +
msg.getHeaders().get(tagHeaderKey).toString());
try {
Thread.sleep(100);
}
catch (InterruptedException ignored) {
}
};
}
因为前面设计了selector,所以这里的消费结构应该是
假如这里的队列是默认的4
Thread-0 Receive: Hello RocketMQ 0 TAG:TagA
Thread-0 Receive: Hello RocketMQ 4 TAG:TagE
Thread-0 Receive: Hello RocketMQ 5 TAG:TagA
Thread-0 Receive: Hello RocketMQ 9 TAG:TagE
...(后续i=10,14,15...)
Thread-1 Receive: Hello RocketMQ 1 TAG:TagB
Thread-1 Receive: Hello RocketMQ 6 TAG:TagB
Thread-1 Receive: Hello RocketMQ 11 TAG:TagB
...(后续i=16,21...)
Thread-2 Receive: Hello RocketMQ 2 TAG:TagC
Thread-2 Receive: Hello RocketMQ 7 TAG:TagC
Thread-2 Receive: Hello RocketMQ 12 TAG:TagC
...(后续i=17,22...)
Thread-3 Receive: Hello RocketMQ 3 TAG:TagD
Thread-3 Receive: Hello RocketMQ 8 TAG:TagD
Thread-3 Receive: Hello RocketMQ 13 TAG:TagD
...(后续i=18,23...)
同一个队列中消息是顺序的,这里的thread0中有A,E两个标签,如果要避免这种情况,应该把队列设置为Tags.size的长度
他这里的设计应该就是为了尽可能的将不同标签分布在不同的队列,最终形成同一队列对应同一标签,然后实现顺序消费
实际开发案例(支付订单)说明
有了上面的案例下面我理解起来就方便很多了
注意:下面代码并不完整,只是一个大致逻辑说明
这里以支付订单案例说明
下面是代码前置,就是一个创建订单的流程,有兴趣的可以了解下,不然可以直接跳过看生产者消费者配置
一般咱们支付之前都会先生成订单,参数除了正常的支付单号,支付时间这些基本的东西外有一个支付倒计时这个功能,这个支付倒计时一般是咱们后台给配置的:这里我举个例,比如说后台模板中配置了1.消费下单:15分钟、2.通联支付:30分钟等等,这里我们会根据支付单号查询数据库对应的支付倒计时,这里超时咱们就可以用rockeMQ中延时队列来进行处理
下面代码可以不看,就是一个创建支付单的流程
- 检测订单是否存在
- 获取收益台模板(就是上面说的获取倒计时等数据这样一个东西)
- 先存数据库(防止前端多次下单)后支付的时候再调用第三方接口(也可以是直接对接银行)
- 存完设置redis缓存信息,防止多次创建订单
- 将订单数据假如延迟队列
@Override
public BillsPlan save(PaymentBillsDTO paymentBillsDTO) {
String key = redisUtil.get("order:" + paymentBillsDTO.getBusinessOrderNo());
if (key != null) {
log.info("支付订单已创建,请前往收银台支付!");
throw ExFactory.bizException(PaymentError.PAYMENT_BILL_COLLECTING);
}
// 检查订单是否存在
PaymentBills byId = this.getOne(Wrappers.<PaymentBills>lambdaQuery()
.eq(PaymentBills::getBusinessOrderNo, paymentBillsDTO.getBusinessOrderNo())
.eq(PaymentBills::getPaymentBillStatus, AgentCollectStatusEnum.COLLECT_SUCCESS.getStatus())
.last("limit 1"));
if (byId != null) {
throw ExFactory.bizException(PaymentError.PAYMENT_BILL_FINISHED);
}
// 获取收银台
PaymentTransactionType xiaofeixiadan = paymentTransactionTypeService.getOne(Wrappers.<PaymentTransactionType>lambdaQuery().eq(PaymentTransactionType::getTypeCode, "xiaofeixiadan"));
if (Objects.isNull(xiaofeixiadan)) {
throw ExFactory.bizException(PaymentError.PAYMENT_TRANSACTION_TYPE_NOT_EXIST);
}
Integer typeId = xiaofeixiadan.getId();
CashierTemplate cashierTemplate = cashierTemplateService.getOne(Wrappers.<CashierTemplate>lambdaQuery().eq(CashierTemplate::getTransactionTypeId, typeId));
if (Objects.isNull(cashierTemplate)) {
throw ExFactory.bizException(PaymentError.CASHIER_TEMPLATE_NOT_EXIST);
}
Integer delayLevel;
try {
delayLevel = RocketMqDelayLevelEnum.getLevelByMinutes(cashierTemplate.getPaymentCountdown());
} catch (Exception e) {
throw ExFactory.bizException(PaymentError.CASHIER_TEMPLATE_BAD_TIMEOUT_PARAM);
}
// 保存数据到payment_bills表
PaymentBills paymentBills = PaymentBillsConverter.INSTANCE.from(paymentBillsDTO);
paymentBills.setPaymentBillType(TransactionTypeEnum.PAY.getCode());
paymentBills.setPaymentBillStatus("1");
this.save(paymentBills);
// 保存数据到payment_bills_plan表,TODO 根据活动判断是否需要生成多条支付计划,目前只生成一条
BillsPlan billsPlan = new BillsPlan();
BeanUtil.copyProperties(paymentBillsDTO, billsPlan);
billsPlan.setPaymentBillId(paymentBills.getPaymentBillId());
billsPlan.setPricingSource("银行卡支付");
billsPlan.setPaymentBillStatus("1");
billsPlan.setPaymentBillType(TransactionTypeEnum.PAY.getCode());
billsPlanService.save(billsPlan);
// 记录第三方支付单
PaymentThirdBills paymentThirdBills = new PaymentThirdBills();
BeanUtil.copyProperties(billsPlan, paymentThirdBills);
paymentThirdBills.setChannel("1");
paymentThirdBillsService.save(paymentThirdBills);
// redis设置订单失效时间
redisUtil.set("order:" + paymentBills.getBusinessOrderNo(), String.valueOf(paymentBills.getPaymentBillId()), 30, TimeUnit.MINUTES);
redisUtil.expire("order:" + paymentBills.getBusinessOrderNo(), 30, TimeUnit.MINUTES);
// 发送延迟消息用于处理超时订单
MessageDTO messageDTO = new MessageDTO();
messageDTO.setDataJson(String.valueOf(paymentBills.getPaymentBillId()));
messageDTO.setTag("payment");
messageDTO.setType(AsyncExecuteTypeEnums.DELAY_CHECK_PAYMENT_RESULT.getType());
producer.sendDelayMessage(messageDTO, delayLevel);
inspectPayScheduleRpcServiceI.updateInspectPayScheduleStatus(paymentBills.getBusinessOrderNo(), 1);
return billsPlan;
}
producer
这里跟之前的案例没什么区别,都是streamBridge来发送消息,只不过这里是发送延时(延迟)消费,rocketMQ会根据设置的等级来设置延时时间
@RefreshScope
@Service
@Slf4j
public class RocketMqProducer {
@Resource
private StreamBridge streamBridge;
@Value("${spring.cloud.stream.paymentProducer}") // 在nacos中读取配置
private String messageProducer;
public <T> void sendMqMessage(MessageDTO dto) {
streamBridge.send(messageProducer,
MessageBuilder.withPayload(dto)
.setHeader(MessageConst.PROPERTY_TAGS, dto.getTag())
.setHeader(MessageConst.PROPERTY_KEYS, dto.getType())
.build());
}
public void sendDelayMessage(MessageDTO dto, Integer delayLevel) {
// 创建消息头,设置延迟级别
Map<String, Object> headers = new HashMap<>();
headers.put(MessageConst.PROPERTY_DELAY_TIME_LEVEL, String.valueOf(delayLevel));
headers.put(MessageConst.PROPERTY_TAGS,dto.getTag());
headers.put(MessageConst.PROPERTY_KEYS,dto.getType());
// 创建消息
Message<MessageDTO> message = MessageBuilder.withPayload(dto)
.copyHeaders(headers)
.build();
// 使用StreamBridge发送消息
boolean sent = streamBridge.send(messageProducer, message);
if (sent) {
System.out.println("延迟消息发送成功");
log.info("当前秒数:{}", LocalDateTime.now().getSecond());
} else {
System.out.println("延迟消息发送失败");
}
}
}
nacos中的静态配置
# 配置 rocketmq 的 nameserver 地址
spring.cloud.stream.rocketmq.binder.name-server=******
spring.cloud.stream.rocketmq.producer.send-type=ASYNC
# 定义 通道 为 paymentProducer 的 生产者,paymentTransactionProducer为有事务的生产者
spring.cloud.stream.paymentProducer=paymentProducer-out-0
spring.cloud.stream.bindings.paymentProducer-out-0.binder=rocketmq
spring.cloud.stream.bindings.paymentProducer-out-0.content-type=application/json
spring.cloud.stream.bindings.paymentProducer-out-0.destination=payment-topic
spring.cloud.stream.paymentTransactionProducer=paymentTransactionProducer-out-0
spring.cloud.stream.bindings.paymentTransactionProducer-out-0.binder=rocketmq
spring.cloud.stream.bindings.paymentTransactionProducer-out-0.content-type=application/json
spring.cloud.stream.bindings.paymentTransactionProducer-out-0.destination=payment-topic
spring.cloud.stream.rocketmq.bindings.paymentTransactionProducer-out-0.producer.producerType=Trans
spring.cloud.stream.rocketmq.bindings.paymentTransactionProducer-out-0.producer.transactionListener=RocketMqTransactionListener
# 定义 通道 为 paymentConsumer 的 消费者,tags 定义只接受 payment和all 消息
spring.cloud.stream.bindings.paymentConsumer-in-0.binder=rocketmq
spring.cloud.stream.bindings.paymentConsumer-in-0.content-type=application/json
spring.cloud.stream.bindings.paymentConsumer-in-0.destination=payment-topic
spring.cloud.stream.bindings.paymentConsumer-in-0.group=payment-customer-group
spring.cloud.stream.rocketmq.bindings.paymentConsumer-in-0.consumer.group=payment-customer-group
spring.cloud.stream.rocketmq.bindings.paymentConsumer-in-0.consumer.subscription=payment||all
spring.cloud.stream.rocketmq.bindings.paymentConsumer-in-0.consumer.messageModel=CLUSTERING
这里和案例中的都差不多
consumer
首先定义paymentConsumer的bean对象来接收名为paymentConsumer的topic,编程式事务根据不同的类型来执行不同的方法
着重看注释的地方
1.service.execute(dto);
2.getData(dto);//获取数据参数类型
3. asyncExcute(data);//根据参数类型进行重载
@Slf4j
@Configuration
public class AsyncExecuteConsumer {
@Value("${payment.asyncMsg.maxRetryCount}")
private Integer maxRetryCount;
@Resource
private AsyncRetryInfoMapper asyncRetryInfoMapper;
@Resource
private TransactionTemplate transactionTemplate;
@Bean
public Consumer<MessageDTO> paymentConsumer() {
return message -> {
log.info("paymentConsumer接到消息:{}", message);
handleMessage(message);
};
}
public void handleMessage(MessageDTO dto) {
log.info("异步执行流程 接收MQ Content:{}", JSON.toJSONString(dto));
if (StringUtils.isEmpty(dto.getType())){
log.error("MQ消息type类型为空");
return;
}
AsyncExecuteTypeEnums byType = AsyncExecuteTypeEnums.getByType(dto.getType());
if(Objects.isNull(byType)){
log.error("MQ消息type类型错误:{}", dto.getType());
return;
}
AsyncExecuteService service = AsyncExecuteService.getService(byType); //这里通过类型获取对应的执行service对象
if (Objects.nonNull(service)) {
try {
// 使用编程式事务确保事务正确传播
transactionTemplate.execute(status -> {
try {
service.execute(dto);
return true;
} catch (Exception e) {
status.setRollbackOnly();
throw e;
}
});
} catch (Exception e) {
log.error("{}异步任务执行异常:{}",byType.getDesc(),e);
// 记录异常信息
if(checkRetryCount(dto.getCurrRetryCount())){
dto.setErrorMsg(e.getCause().getMessage());
dto.setCurrRetryCount(dto.getCurrRetryCount()+1);
// 重试
log.info("{}异步任务第{}次重试",byType.getDesc(), dto.getCurrRetryCount());
handleMessage(dto);`在这里插入代码片`
}else{
//记录异常到数据库
log.info("{}异步任务达到最大重试次数,入库",byType.getDesc());
asyncRetryInfoMapper.insert(MsgRetryConverter.INSTANCE.toRetry(dto));
}
}
}
}
/**
* 检查是否可重试
* @param currentRetryCount
* @return
*/
public Boolean checkRetryCount(Integer currentRetryCount) {
currentRetryCount++;
return currentRetryCount <= maxRetryCount;
}
}
这里通过枚举定义了3个类型 入账,支付,提现
@Getter
public enum AsyncExecuteTypeEnums {
/**
* 入账
*/
ACCOUNTING("accouting", "入账"),
DELAY_CHECK_PAYMENT_RESULT("delayCheckPaymentResult", "延迟检测支付结果"),
DELAY_CHECK_WITHDRAW_RESULT("delayCheckWithdrawResult", "延迟检测提现结果"),
;
private final String type;
private final String desc;
AsyncExecuteTypeEnums(String type, String desc) {
this.type = type;
this.desc = desc;
}
public static AsyncExecuteTypeEnums getByType(String type) {
for (AsyncExecuteTypeEnums asyncExecuteTypeEnums : AsyncExecuteTypeEnums.values()) {
if (asyncExecuteTypeEnums.getType().equals(type)) {
return asyncExecuteTypeEnums;
}
}
return null;
}
}
@Slf4j
public abstract class AsyncExecuteService<T> {
/**
* Service仓库
*/
protected static Map<AsyncExecuteTypeEnums, AsyncExecuteService> SERVICES = new HashMap<>();
/**
* 获取Service
*
* @param type 类型
* @return Service
*/
public static AsyncExecuteService getService(AsyncExecuteTypeEnums type) {
return SERVICES.get(type);
}
/**
* 执行流程
*
* @param dto 参数
*/
@Transactional(rollbackFor = Exception.class, propagation = Propagation.REQUIRES_NEW)
public void execute(MessageDTO dto) {
try {
T data = getData(dto); //获取对应的类型,以便根据业务执行不同的代码
if(bizVerify(data)){
asyncExcute(data);
}
} catch (Exception e) {
log.error("执行异步任务时发生异常:{}", e);
throw e;
}
}
/**
* 获取数据
*
* @param dto 参数
* @return 结果
*/
protected T getData(MessageDTO dto) {
try {
ParameterizedType parameterizedType = (ParameterizedType) this.getClass().getGenericSuperclass(); //this.getClass().getGenericSuperclass() 获取当前类的泛型父类类型,即 AsyncExecuteService<T>。
@SuppressWarnings("unchecked")
Class<T> clazz = (Class<T>) parameterizedType.getActualTypeArguments()[0];//parameterizedType.getActualTypeArguments()[0] 获取泛型参数 T 的实际类型。
if(clazz.isInstance(String.class)) {
return (T) dto.getDataJson();
}
return JSON.parseObject(dto.getDataJson(), clazz);//使用 JSON.parseObject(dto.getDataJson(), clazz) 将 dataJson 字符串转换为指定的类型 T。
}catch (Exception e) {
log.error("异步执行流程 转换数据异常 数据:{}", dto, e);
throw new RuntimeException("数据转换异常", e);
}
}
/**
* 初始化Factory
*/
@PostConstruct
protected abstract void registerService();
/**
* 验证业务上的事务是否提交
*
* @param dto 参数
*/
protected abstract Boolean bizVerify(T dto);
/**
* 执行核心业务
*
* @param dto 参数
*/
protected abstract void asyncExcute(T dto);
}
这里继承了AsyncExecuteService这个抽象类用于实现具体执行体
@Slf4j
@Service
public class PaymentBillsDelayConsumer extends AsyncExecuteService<String> {
@Lazy
@Resource
private PaymentBillsService paymentBillsService;
@Lazy
@Resource
private BillsPlanService billsPlanService;
@Lazy
@Resource
private PaymentThirdBillsService paymentThirdBillsService;
@Lazy
@Resource
private PaymentRequestService paymentRequestService;
@Lazy
@Resource
private RedisUtil redisUtil;
@Lazy
@Resource
private AllinPayService allinPayService;
@Lazy
@DubboReference
private InspectPayScheduleRpcServiceI inspectPayScheduleRpcService;
@Override
protected void registerService() {
SERVICES.put(AsyncExecuteTypeEnums.DELAY_CHECK_PAYMENT_RESULT, this);
}
@Override
protected Boolean bizVerify(String paymentBillId) {
PaymentBills paymentBills = paymentBillsService.getById(Long.valueOf(paymentBillId));
if (Objects.isNull(paymentBills)) {
log.error("支付订单id:{} 不存在", paymentBillId);
return false;
}
return true;
}
@Override
protected void asyncExcute(String paymentBillId) {
log.info("支付订单id:{} 开始执行订单超时处理", paymentBillId);
log.info("当前秒数:{}", LocalDateTime.now().getSecond());
PaymentBills paymentBills = paymentBillsService.getById(Long.valueOf(paymentBillId));
// 删除redis缓存的key
Long businessOrderNo = paymentBills.getBusinessOrderNo();
if(redisUtil.hasKey("order:"+businessOrderNo)) {
redisUtil.delete("order:"+businessOrderNo);
}
if (!paymentBills.getPaymentBillStatus().equals(AgentCollectStatusEnum.COLLECTING.getStatus())) {
log.info("支付订单id:{} 已支付或已进行超时处理", paymentBillId);
return;
}
// 将支付中的订单/计划单/支付单/支付请求的状态修改为超时
// 订单
paymentBills.setPaymentBillStatus(AgentCollectStatusEnum.COLLECT_TIMEOUT.getStatus());
paymentBillsService.updateById(paymentBills);
// 计划单
List<BillsPlan> billsPlans = billsPlanService.list(Wrappers.<BillsPlan>lambdaQuery()
.eq(BillsPlan::getPaymentBillId, paymentBillId)
.eq(BillsPlan::getPaymentBillStatus, AgentCollectStatusEnum.COLLECTING.getStatus()));
if(CollectionUtils.isNotEmpty(billsPlans)) {
billsPlans.forEach(billsPlan -> {
billsPlan.setPaymentBillStatus(AgentCollectStatusEnum.COLLECT_TIMEOUT.getStatus());
});
billsPlanService.updateBatchById(billsPlans);
paymentRequestService.update(Wrappers.<PaymentRequest>lambdaUpdate()
.in(PaymentRequest::getPaymentPlanId, billsPlans.stream().map(BillsPlan::getPaymentPlanId).toList())
.eq(PaymentRequest::getPaymentStatus, AgentCollectStatusEnum.COLLECTING.getStatus())
.set(PaymentRequest::getPaymentStatus, AgentCollectStatusEnum.COLLECT_TIMEOUT.getStatus()));
}
// 支付单
paymentThirdBillsService.update(Wrappers.<PaymentThirdBills>lambdaUpdate()
.eq(PaymentThirdBills::getPaymentBillId, paymentBillId)
.eq(PaymentThirdBills::getPaymentBillStatus, AgentCollectStatusEnum.COLLECTING.getStatus())
.set(PaymentThirdBills::getPaymentBillStatus, AgentCollectStatusEnum.COLLECT_TIMEOUT.getStatus())
);
// 将B3的支付状态修改为支付超时
// 支付请求单
// // 调用第三方接口将支付中的请求单关闭
// paymentRequestService.list(Wrappers.<PaymentRequest>lambdaQuery()
// .in(PaymentRequest::getPaymentPlanId, billsPlans.stream().map(BillsPlan::getPaymentPlanId).toList())
// .eq(PaymentRequest::getPaymentStatus, AgentCollectStatusEnum.COLLECTING.getStatus()))
// .forEach(paymentRequest -> {
// try {
// JSONObject object = allinPayService.closeOrder(paymentRequest.getPaymentRequestId() + "");
// log.info("支付请求id:{} 关闭结果:{}", paymentRequest.getPaymentRequestId(), object);
// }catch (Exception e){
// log.error("支付请求id:{} 关闭失败", paymentRequest.getPaymentRequestId());
// }
// });
// 修改B3付款状态为待支付
inspectPayScheduleRpcService.updateInspectPayScheduleStatus(paymentBills.getBusinessOrderNo(), 0);
}
}
总结
以上就是spring cloud stream 集成rocketmq的全部,像使用事务消息,获取其他可以继续看看文档,写得还是比较好理解,同理的如果想集成kafka,rabbitMQ,也可以下载案例进行参考