反素数
文章参考(ACdreamers)
1.定义
“于任何正整数x,其约数的个数记作g(x)。例如g(1)=1、g(6)=4。
如果某个正整数x满足:g(x)>g(i),0<i<x,则称x为反质数。例如,整数1,2,4,6等都是反质数。”
————度娘说的
什么意思呢?用自己的口水话解释一下:对于一个数 x x x,如果从 1 1 1 到 ( x − 1 ) (x-1) (x−1)这几个数中没有任意一个数的因数个数大于 x x x的,那么就称 x x x为反素数。
其实,反素数的本质就是尽可能地让因子数量最大,但是数值最小。
2.性质
从反素数的定义可以发现凡是反素数都满足两个性质:
- 性质一:对于所有反素数 x = a 1 b 1 ∗ a 2 b 2 ∗ a 2 b 2 ∗ ⋅ ⋅ ⋅ ∗ a k b k x={a_1}^{b_1} *{a_2}^{b_2}*{a_2}^{b_2}*···*{a_k}^{b_k} x=a1b1∗a2b2∗a2b2∗⋅⋅⋅∗akbk,则必有 b 1 ≥ b 3 ≥ ⋅ ⋅ ⋅ ≥ b k b_1\ge b_3\ge ···\ge b_k b1≥b3≥⋅⋅⋅≥bk
这点很好理解,借助贪心的思想我们思考:首先要让因子数量尽可能的多,只需要把质因数的次数变多,或者质因数变多。但是还得满足让数值尽可能的小,那么就要让小的质因数的次数尽可能的大 - 性质二:一个反素数的质因子必然是从2开始连