反素数 &[BSOJ1414] Antiprime数& [BSOJ4861] 最多因数 & [LuoguP1221] 最多因子数 题解

本文详细介绍了反素数的概念,包括定义、性质,并通过例题讲解了如何求解反素数及最多因数的问题。文章讨论了性质一(质因数指数上升)和性质二(质因子连续),并提供了利用DFS解决此类问题的思路和边界条件。
摘要由CSDN通过智能技术生成

反素数

文章参考(ACdreamers)


1.定义

“于任何正整数x,其约数的个数记作g(x)。例如g(1)=1、g(6)=4。
如果某个正整数x满足:g(x)>g(i),0<i<x,则称x为反质数。例如,整数1,2,4,6等都是反质数。”
                                           ————度娘说的

什么意思呢?用自己的口水话解释一下:对于一个数 x x x,如果从 1 1 1 ( x − 1 ) (x-1) (x1)这几个数中没有任意一个数的因数个数大于 x x x的,那么就称 x x x反素数
其实,反素数的本质就是尽可能地让因子数量最大,但是数值最小。

2.性质

从反素数的定义可以发现凡是反素数都满足两个性质:

  • 性质一:对于所有反素数 x = a 1 b 1 ∗ a 2 b 2 ∗ a 2 b 2 ∗ ⋅ ⋅ ⋅ ∗ a k b k x={a_1}^{b_1} *{a_2}^{b_2}*{a_2}^{b_2}*···*{a_k}^{b_k} x=a1b1a2b2a2b2akbk,则必有 b 1 ≥ b 3 ≥ ⋅ ⋅ ⋅ ≥ b k b_1\ge b_3\ge ···\ge b_k b1b3bk
    这点很好理解,借助贪心的思想我们思考:首先要让因子数量尽可能的多,只需要把质因数的次数变多,或者质因数变多。但是还得满足让数值尽可能的小,那么就要让小的质因数的次数尽可能的大
  • 性质二:一个反素数的质因子必然是从2开始连
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值