用牛顿迭代法求解非线性方程组

用牛顿迭代法求解非线性方程组

主程序newton.m

clear
clc
[F,v]=wuzu;
x1=input('请输入初值:');
eps=input('请输入误差精度:');
b=jacobian(F,v);
for i=1:1:length(x1)
b=subs(b,v(i),x1(i));
F=subs(F,v(i),x1(i));
end
b=eval(b);
F=eval(F);
x2=x1-b\F';
i=1;
while max(abs(x2-x1))>=eps
    x1=x2;
    F=wuzu;
b=jacobian(F,v);
for i=1:1:length(x1)
b=subs(b,v(i),x1(i));
F=subs(F,v(i),x1(i));
end
b=eval(b);
F=eval(F);
x2=x1-b\F';
    i=i+1;
    if i==1000
        break;
    end
end
if i>=1000
     disp('newton迭代法很可能不收敛!')
else
   disp('方程的根是:');
x=x2
end

所要求解非线性方程组
wuzu,m

function [F,v]=wuzu
syms x y 
f1=atan(x^(1/3)+y^(2/3)-4)-1;
f2=exp(x^(-2)+y^(-2))-4;
F=[f1,f2];
v=[x,y];
end

结果展示:
在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值