leetcode-105 从前序和中序遍历序列构造二叉树

在这里插入图片描述在这里插入图片描述这是刷leetcode以来第一次碰到了一道有关树的题 这种题一看就是要用到递归啦(遥想当年我一直不懂递归,直到学二叉树的时候 关于二叉树的操作基本上都要用上递归才学会了) 先序序列是 父节点->左孩子->右孩子 中序序列是 左孩子->父结点->右孩子 题目中 先序序列是 3,9,20,15,7 中序序列是
9,3,15,20,7 根据上述对先序中序的解释 我们可以知道 根节点是3 那
这时看一下中序序列 可以得到 3的左边是它左子树上的节点 右边是它右子树上的节点 这样整棵树就构建好了 再递归的去构建左子树和右子树 思路同上

struct TreeNode* build_Tree(int* preorder, int preorderSize, int* inorder, int inorderSize,int *root,int range1,int range2)
{
    if(*root>=preorderSize)
       return NULL;
    if(range1>range2)
      return NULL;
    struct TreeNode* Root=(struct TreeNode*)malloc(sizeof(struct TreeNode));
    Root->val=preorder[*root];
    int i=0,index=0;
    for(i=range1;i<=range2;i++)
    {
        if(inorder[i]==preorder[*root])//找到根节点
        {
            index=i;
            break;
        }    
    }
    *root+=1;
    Root->left=build_Tree(preorder,preorderSize,inorder,inorderSize,root,range1,index-1);
    Root->right=build_Tree(preorder,preorderSize,inorder,inorderSize,root,index+1,range2);
    return Root;
}
struct TreeNode*  buildTree(int* preorder, int preorderSize, int* inorder, int inorderSize){
     if(preorderSize==0)//如果是一棵空树
         return NULL;
      int root=0;
      return build_Tree(preorder,preorderSize,inorder,inorderSize,&root,0,inorderSize-1);
}

迭代

在这里插入图片描述

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    // 3,20,7 3,20,7
    // preorder = {3,9,20,15,7}
    // inorder  = {9,3,15,20,7}
    public TreeNode buildTree(int[] preorder, int[] inorder) {
        Stack<TreeNode> stack = new Stack<>();
        TreeNode root = new TreeNode(preorder[0]);
        stack.push(root);
        int inorderIndex = 0;
        TreeNode node = null;
        for(int i = 1; i < preorder.length;i++){
            if(!stack.isEmpty() && stack.peek().val != inorder[inorderIndex]){
                 node = stack.peek();
                 node.left = new TreeNode(preorder[i]);
                 stack.push(node.left);
            }
            else{
                 while(!stack.isEmpty() && stack.peek().val == inorder[inorderIndex]){
                     node = stack.pop();
                     inorderIndex += 1;
                 }
                 node.right = new TreeNode(preorder[i]);
                 stack.push(node.right);
            }
        }
        return root;

    }
}

递归

在这里插入图片描述

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    private int preorderIndex = 0;
    public TreeNode buildTree(int[] preorder, int[] inorder) {
       return buildT(preorder,inorder,0,inorder.length-1);
    }
    public TreeNode buildT(int[] preorder,int[] inorder,int l,int r){
        if(l > r)
           return null;
        int rootIndex = 0;
        for(int i = l;i <= r;i++){
           if(inorder[i] == preorder[preorderIndex]){
               rootIndex = i;
               break;
           }
        }
        TreeNode root = new TreeNode(inorder[rootIndex]);
        preorderIndex += 1;
        root.left = buildT(preorder,inorder,l,rootIndex-1);
        root.right = buildT(preorder,inorder,rootIndex+1,r);
        return root;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值