FFmpeg使用GPU加速

本文详细介绍了如何在系统中安装和配置CUDA环境,包括设置CUDA路径,安装nv-codec-headers,以及编译和安装ffmpeg编码库。同时,提到了验证ffnvcodec的方法和使用ffmpeg进行硬件加速编码的示例。
摘要由CSDN通过智能技术生成

在执行下面的操作之前,确保以下情况:

nvcc -V

cuda路径:/usr/local/cuda-11.6/lib64

export CUDA_HOME=/usr/local/cuda-11.6

nv-codec-headers

安装路径:

# git clone
git clone https://git.videolan.org/git/ffmpeg/nv-codec-headers.git

cd nv-codec-headers 

# 可使用 git tag 查看可选的版本,我选择的是n11.0.10.2
git checkout n11.0.10.2 -b nv-codec-headers
# 查看该分支版本支持的驱动版本是否满足自己驱动的版本要求(,若不满足则再次切换其他版本查看下图)
cat README

# 满足版本要求后Install 
make
sudo make install && cd ..

# 通过pkg-config 验证ffnvcodec,如果找不到,把ffnvcodec.pc路径添加到PKG_CONFIG_PATH
pkg-config --modversion ffnvcodec

ffmpeg编码库

安装路径:

# Clone 
git clone https://code.videolan.org/videolan/x264.git

# Install 
cd x264
./configure --disable-asm --enable-shared --enable-pic

make
sudo make install

# 也可通过以下命令直接安装
sudo apt-get install x264 libx264-dev

ffmpeg

# 下载ffmpeg
https://git.ffmpeg.org/ffmpeg.git

cd ./ffmpeg

./configure --enable-cuda --enable-cuvid --enable-nvenc --enable-nonfree --enable-libnpp --extra-cflags=-I/usr/local/cuda-11.6/include --extra-ldflags=-L/usr/local/cuda-11.6/lib64

make -j 10

# 测试
./ffmpeg -y -hwaccel cuvid -c:v h264_cuvid -vsync 0 -i test.mp4 -vf scale_npp=1920:1072 -vcodec h264_nvenc 1.mp4 -vf scale_npp=1280:720 -vcodec h264_nvenc 2.mp4

ffmpeg -y -hwaccel cuvid -c:v h264_cuvid -init_hw_device cuda=2 -i test.mp4 -vf scale_npp=1920:1072 -vcodec h264_nvenc -filter_hw_device gpu_id 1.mp4 -vf scale_npp=1280:720 -vcodec h264_nvenc -filter_hw_device gpu_id 2.mp4



评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

莫余

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值