首先先看什么是大顶堆、小顶堆
大顶堆:每个结点的值都大于或等于其左右子结点的值
小顶堆:每个结点的值都小于或等于其左右子结点的值
如图:
那么大顶堆对应的数组就是:
[50,45,40,20,25,35,30,10,15]
小顶堆对应的数组就是:
[10,20,15,25,50,30,40,35,45]
我们知道,数组中,下标为i
的元素的左子节点(如果存在)为下标2*i+1
的元素,右子节点(如果存在)为下标2*i+2
的元素(i从0开始)
1、思路
(1)将无序序列构建成一个大顶堆(小顶堆)
(2)将堆顶元素与末尾元素进行交换,即将最大元素与数组最后一个元素进行交换
(3)重新调整使其成为大顶堆(小顶堆),然后继续交换堆顶元素与当前末尾元素
(4)反复执行(2)(3)步直至完成排序
2、代码实现
思路:
最重要的代码部分就是实现堆的维护,这里以大顶堆为例:
(1)维护大顶堆
从最后一个非叶子结点开始,自左向右,自下而上进行调整,每次都完成局部大顶堆的调整直至到根结点(最后一个非叶子结点下标为:arr.length/2-1
)
/**
*功能:将数组调整为大顶堆
* @param arr 待排序数组
* @param i i表示非叶子结点在数组索引
* @param len len表示对多少个元素继续调整,len会逐渐减少
*/
public static void adjustHeap(int arr[],int i,int len)
{
int tmp=arr[i]; //保存当前元素的值
//调整过程,
//每次都是查看左子节点,因为右子节点可以根据左子节点找到
//之所以需要循环是因为:如果元素进行了交换,可能原来的局部大顶堆就不满足了
for(int k=2*i+1;k<len;k=k*2+1)
{
//找出左右子结点较大者
if(k+1<len && arr[k]<arr[k+1])
{
k=k+1;
}
//判断当前结点是否需要与左右节点较大者进行交换
if(tmp<arr[k])
{
arr[i]=arr[k];
arr[k]=tmp;
i=k; //!!!!!继续循环比较
}
else
{
break;
}
}
//循环结束后,以i为父节点的局部大顶堆已完成
}
(2)堆排序
-
第一个for循环中的
adjustHeap
是自下而上构建大顶堆,每次都完成局部大顶堆的构建直到最后完成整个大顶堆的构建 -
第二个for循环中的
adjustHeap
是自上而下维护大顶堆,因为进行交换后根结点及其左右子结点不满足大顶堆的性质,但是其余局部大顶堆仍然满足,因此不必自下而上维护大顶堆,而是自上而下维护大顶堆
public static void heapSort(int arr[])
{
//自左向右,自下而上构建大顶堆
for(int i=arr.length/2-1;i>=0;i--)
{
adjustHeap(arr,i,arr.length);
}
for(int j=arr.length-1;j>0;j--)
{
int tmp=arr[j];
arr[j]=arr[0];
arr[0]=tmp;
//由于这里只是影响了根结点的大顶堆,因此这里是自定向下调整大顶堆
adjustHeap(arr,0,j);
}
//System.out.println(Arrays.toString(arr));
}
3、完整代码
import java.text.SimpleDateFormat;
import java.util.Arrays;
import java.util.Date;
public class HeapSort {
public static void main(String[] args) {
// int arr[]={4,6,8,5,9,-1,90,89,56};
// heapSort(arr);
int testArr[]=new int[8];
for(int i=0;i<8;i++)
{
testArr[i]=(int)(Math.random()*8000000);
}
Date date1=new Date();
SimpleDateFormat simpleDateFormat=new SimpleDateFormat("HH:mm:ss:sss");
String date1str=simpleDateFormat.format(date1);
System.out.println(Arrays.toString(testArr));
System.out.println("排序前时间:"+date1str);
heapSort(testArr);
Date date2=new Date();
String date2str=simpleDateFormat.format(date2);
System.out.println("排序后时间:"+date2str);
System.out.println(Arrays.toString(testArr));
}
public static void heapSort(int arr[])
{
// adjustHeap(arr,1,arr.length);
// System.out.println(Arrays.toString(arr));
// adjustHeap(arr,0,arr.length);
// System.out.println(Arrays.toString(arr));
for(int i=arr.length/2-1;i>=0;i--)
{
adjustHeap(arr,i,arr.length);
}
for(int j=arr.length-1;j>0;j--)
{
int tmp=arr[j];
arr[j]=arr[0];
arr[0]=tmp;
adjustHeap(arr,0,j);
}
//System.out.println(Arrays.toString(arr));
}
/**
*功能:将数组调整为大顶堆
* @param arr 待排序数组
* @param i i表示非叶子结点在数组索引
* @param len len表示对多少个元素继续调整,len逐渐减少
*/
public static void adjustHeap(int arr[],int i,int len)
{
int tmp=arr[i]; //保存当前元素的值
//调整过程,
//每次都是查看左子节点,因为右子节点可以根据左子节点找到
for(int k=2*i+1;k<len;k=k*2+1)
{
//找出左右子结点较大者
if(k+1<len && arr[k]<arr[k+1])
{
k=k+1;
}
//判断当前结点是否需要与左右节点较大者进行交换
if(tmp<arr[k])
{
arr[i]=arr[k];
arr[k]=tmp;
i=k; //!!!!!继续循环比较
}
else
{
break;
}
}
//循环结束后,以i为父节点的局部大顶堆已完成
}
}
运行结果
4、性能分析
时间复杂度是O(nlogn),是不稳定的排序
八百万条数据排序只花了2s