《论文阅读》对比学习下的自然语言生成任务系列论文讲解
-
-
- 基本知识
- 对比学习(Contrastive Learning)
- 无监督的对比学习
- 监督对比学习
- NLG with Supervised Contrastive Learning
- CONT: Contrastive Neural Text Generation(NIPs 2022)
- Multi-level Adaptive Contrastive Learning for Knowledge Internalization in Dialogue Generation(EMNLP 2023)
- Improving the Robustness of Knowledge-Grounded Dialogue via Contrastive Learning(AAAI 2024)
前言
亲身阅读感受分享,细节画图解释,再也不用担心看不懂论文啦~
无抄袭,无复制,纯手工敲击键盘~
今天为大家带来的是《Natural Language Generation with Contrastive Learning
》
基本知识
对比学习(Contrastive Learning)
监督学习
:就是已知输入数据(Input data)和输出数据(Annotations),通过训练一个模型(Model)来建立输入和输出之间的映射。例如对话上下文x->回复y
无(自)监督学习
:无监督学习则是已知输入数据(Input data),通过训练一个模型(Model)来获取输入数据的结构以及之间的关系