【手写系列】二叉搜索树BST

整个二叉排序树最难的点也就是删除操作,你看懂我的删除,二叉排序树你就完全了解了。具体有难度的地方已在文中注释

Binary Search Tree:

/**
 * @author Jay
 * @date 2020/7/10 10:22
 * @Description:
 */
public class BST <E extends Comparable<E>> {


    private class Node{
        private E e;
        private Node left,right;

        public Node(E e){
            this.e=e;
            left=null;
            right=null;
        }

    }

    private Node root;
    private int size;

    public BST(){
        root=null;
        size=0;
    }

    public int getSize(){
        return size;
    }

    public boolean isEmpty(){
        return size==0;
    }

    public void add(E e){
        add(root ,e);
//        ++size;
    }

    private Node add(Node root,E e) {
        if (root == null) {
            ++size;
            return new Node(e);
        }
        //通过compareTo方法,e的值比根节点小会返回-1
            if (e.compareTo(root.e)<0)
                root.left=add(root.left, e);
            else if (e.compareTo(root.e)>0)
                root.right=add(root.right,e);
            return root;
    }

    public boolean contains(E e){
        return contains(root,e);
    }

    public boolean contains(Node node,E e){
        if (root==null)return false;

        if (e.equals(root.e))return true;

        else if (e.compareTo(root.e)<0) return contains(root.left,e);
        else  return contains(root.right,e);
    }


    //前序遍历
    public void preOrder(){

        preOrder(root);
    }
    private void preOrder(Node root){
        if (root==null)return ;
        System.out.println(root.e);
        preOrder(root.left);
        preOrder(root.right);

    }
    //后序遍历
    public void postOrder(){

       postOrder(root);
    }
    private void postOrder(Node root){
        if (root==null)return ;
        preOrder(root.left);
        preOrder(root.right);
        System.out.println(root.e);
    }

    //二叉树的中序遍历
    public void inOrder() {
        inOrder(root);
    }
    private void inOrder(Node root) {
        if (root == null) return;

        inOrder(root.left);
        System.out.println(root.e);
        inOrder(root.right);
    }

    //非递归形式前序遍历

    public void preOrderNR(){
        LinkStack<Node> stack=new LinkStack<>();
        stack.push(root);
        while(!stack.isEmpty()){
            Node cur=stack.pop();
            System.out.println(cur.e);
            if (cur.right!=null)stack.push(root.right);
            if (cur.left!=null)stack.push(root.left);
        }
    }

    public void BFS(){
        LoopQueue<Node> queue=new LoopQueue<>();
        queue.enqueue(root);
        while (!queue.isEmpty()){
            Node cur=queue.dequeue();
            System.out.println(cur);
            if (cur.left!=null)queue.enqueue(cur.left);
             if (cur.right!=null)queue.enqueue(cur.right);
        }
    }
   //返回最小值,递归
    public E minimum(){
        if (size==0)throw new IllegalArgumentException("BST is empty!");

        return minimum(root).e;
    }

    public Node minimum(Node node){
        if (node.left==null)return  node;
        return minimum(node);
    }
    //返回最小值,非递归

    public E minimumNR(){
        if (size == 0)
            throw new IllegalArgumentException("BST is empty!");
        Node ans=root;
        while (ans.left!=null)ans=ans.left;
        return ans.e;
    }
    //返回最大值
    public E maximum(){
        if (size==0)throw new IllegalArgumentException("BST is empty!");
        return maximum(root).e;
    }
    public Node maximum(Node node){
        if (node==null)return node;
        return maximum(node);
    }

    //返回最大值,非递归

    public E maximumNR(){
        if (size==0)throw new IllegalArgumentException("BST is empty!");
        Node ans=root;
        while (ans!=null)ans=ans.right;
        return ans.e;
    }

    //删除二分搜索树的最小结点并返回其值

    public E removeMin(){
        E ret=minimum();
        root=removeMin(root);
        return ret;
    }
    public Node removeMin(Node node) {
        if (node.left==null){
            Node rightNode=node.right;
            node.right=null;
            --size;
            return rightNode;//递归后这里的值赋回下面那句node.left
        }
        node.left=removeMin(node.left);
        return node;//返回删除后的新子树
    }
    public E removeMax(){
        E ret=maximum();
        root=removeMax(root);
        return ret;
    }
    public Node removeMax(Node node) {
        if (node.right==null){
            Node leftNode=node.left;
            node.left=null;
            --size;
            return leftNode;//递归后这里的值赋回下面那句node.right
        }
        node.right=removeMax(node.right);
        return node;//返回删除后的新子树
    }


    public void remove(E e){
        root=remove(root,e);
    }
    //删除以node为根的二分搜索树中值为e的结点,递归算法
    //返回删除结点后新的二分搜索树的根
    private Node remove(Node node, E e) {
        if (node == null) return null;
        if (e.compareTo(node.e) < 0) {
            node.left = remove(node.left, e);
            return node;
        }
        else if (e.compareTo(node.e) < 0) {
            node.right = remove(node.right, e);
            return node;
        }
        else { //e == node.e
            if (node.left == null) { //待删除结点左子树为根的情况
                Node rightNode = node.right;
                node.right = null;
                --size;
                return rightNode;
            }
            if (node.right == null) {
                Node leftNode = node.left;
                node.left = null;
                --size;
                return leftNode;
            }

            //找到右子树最小的节点,也可以使用左子树最大节点
            Node successor = minimum(node.right);
            //为其接上删除右子树最大节点后的新子树
            successor.right = removeMin(node.right);
           //为其接上左子树
            successor.left = node.left;
            node.left = node.right = null;
            //这里不用写--size;因为已经在removeMin中减少了size
            return successor;
        }
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值