有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。
第 i 件物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。
接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 件物品的体积和价值。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤1000
0<vi,wi≤1000
输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
8
先来说一下状态转移方程吧:
f(i,j) = f(i-1,j) + f(i-1,j-v[i]) + w[i]
f(i,j) 代表的是从前i个物品选,并且总体积<=j。
有两个状态,一个是含i,一个是不含i。
最右边方程的意思是从前1~i-1个物品选,并且总体积不超过j的最大值,然后再加上w[i]就是含i个物品的最大值。这个方程有可能会有空值,当前体积>=v[i]的时候才不为空值。
#include <iostream>
#include<queue>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <cmath>
typedef long long ll;
using namespace std;
const int maxn = 1000 + 10;
int n,m;
int v[maxn],w[maxn];
int f[maxn][maxn];
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) scanf("%d%d",&v[i],&w[i]);
for(int i=1;i<=n;i++){
for(int j=0;j<=m;j++){
f[i][j]=f[i-1][j];
if(j>=v[i]) f[i][j]=max(f[i][j],f[i-1][j-v[i]]+w[i]);
}
}
cout << f[n][m];
return 0;
}
再来说一下空间优化,可以使用滚动数组。
我们看一下f[j-v[i]] 严格小于等于f[j]所以说可以用滚动数组。
具体实现很简单,将二维数组换为一维数组。当我们将i都去掉时,会发现:
for(int i=1;i<=n;i++){
for(int j=v[i];j<=m;j++){
f[j]=max(f[j],f[j-v[i]]+w[i]);
}
}
当我们计算f[j]时,f[j-v[i]]在算f[j]的时候已经更新过了(因为j是从小到大遍历的并且f[j-v[i]]是小于等于f[j]的),这样就造成了一个问题:我们上面计算f[i][j]的时候,用到的是i-1层的,而当我们直接去掉i的时候,用到的是第i层的f[i][j],所以说这样做是不对的,那么我们该怎么做呢?对了,就是将j逆序遍历,然后程序就完成了。
#include <iostream>
#include<queue>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <cmath>
typedef long long ll;
using namespace std;
const int maxn = 1000 + 10;
int n,m;
int v[maxn],w[maxn];
int f[maxn];
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) scanf("%d%d",&v[i],&w[i]);
for(int i=1;i<=n;i++){
for(int j=m;j>=v[i];j--){
f[j]=max(f[j],f[j-v[i]]+w[i]);
}
}
cout << f[m];
return 0;
}