节点屏蔽和基于多粒度消息传递的联邦图模型(M3FGM),专门用于在由于隐私问题而需要数据去中心化的场景中进行时空数据预测。我们通过引入MaskNode层来提高模型的鲁棒性,提出的双子解码器结构可以实现独立的离线预测。此外,GNN还增加了一层MGMP (Multi-Granularity Message Passing)层,使每个客户端节点能够在短的消息传递步骤中感知全局和本地信息。我们在理想和非理想两种情况下进行了评估。
在met - la数据集上,数据分布存在强烈的变化。数据分布移位的发生会导致模型预测性能的显著下降。例如,在使用基于所收集数据训练的交通预测模型时在晴天或雨天或雾天的环境中,通常可以观察到不可避免的性能下降。由于训练后的模型容易与训练数据过拟合,并且容易受到测试时统计量变化的影响,极大地限制了学习表征的泛化能力。
因此,选择合适的掩码率可以有效防止模型过拟合,降低预测误差。相比之下,PEMS-BAY数据集中各节点间的数据分布较为相似,各节点内训练数据分布与测试数据分布差异不大。这说明PEMS-BAY数据集中节点之间的相关性更强,导致离线率和掩码率对模型性能的影响更为显著。上述观察结果强调了根据数据集的特定特征选择合适的掩码率以实现最佳模型性能的重要性。