[剑指offer] 连续子数组的最大和(C++解法)

本文介绍了一种求解整型数组中子数组最大和的算法,时间复杂度为O(n)。通过定义变量max和tmp,遍历数组,实现高效求解。示例中使用[-2,1,-3,4,-1,2,1,-5,4]作为输入,输出最大子数组和为6。
摘要由CSDN通过智能技术生成

输入一个整型数组,数组里有正数也有负数。数组中的一个或连续多个整数组成一个子数组。求所有子数组的和的最大值。

要求时间复杂度为O(n)。

示例1:

输入: nums = [-2,1,-3,4,-1,2,1,-5,4]
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6

提示:
1 <= arr.length <= 10^5
-100 <= arr[i] <= 100

遍历法
思路:
定义一个变量max存放最大值,初始化为数组第一个元素;
定义一个变量tmp存放累加值,初始化为0,顺序遍历数组:

  1. 当 tmp > max 时,置 max = tmp;
  2. 当 tmp < 0 时,说明前面的序列不会是最大自序和,将tmp重置为0;

循环结束,max即为最大值。

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int max = nums[0];
        int tmp = 0;
        for (int i = 0; i < nums.size(); ++i) {
            tmp += nums[i];
            if (tmp > max)
                max = tmp;
            if (tmp < 0)
                tmp = 0;
        }
        return max;
    }
};

觉得写得不错的,请点个赞,谢谢

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值