输入一个整型数组,数组里有正数也有负数。数组中的一个或连续多个整数组成一个子数组。求所有子数组的和的最大值。
要求时间复杂度为O(n)。
示例1:
输入: nums = [-2,1,-3,4,-1,2,1,-5,4]
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
提示:
1 <= arr.length <= 10^5
-100 <= arr[i] <= 100
遍历法
思路:
定义一个变量max存放最大值,初始化为数组第一个元素;
定义一个变量tmp存放累加值,初始化为0,顺序遍历数组:
- 当 tmp > max 时,置 max = tmp;
- 当 tmp < 0 时,说明前面的序列不会是最大自序和,将tmp重置为0;
循环结束,max即为最大值。
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int max = nums[0];
int tmp = 0;
for (int i = 0; i < nums.size(); ++i) {
tmp += nums[i];
if (tmp > max)
max = tmp;
if (tmp < 0)
tmp = 0;
}
return max;
}
};
觉得写得不错的,请点个赞,谢谢