已知求解最长公共子序列的状态数组,求解所有的最长公共子序列
思路
假设有字符串a = ABCBA
、b = BDCAB
状态数组f
为
B D C A B
A 0 0 0 1 1
B 1 1 1 1 2
C 1 1 2 2 2
B 1 1 2 2 3
A 1 1 2 3 3
从右下角开始检查状态数组f
,指向两个字符串的指针分别为n
, m
如果a[n] == b[m]
,说明此时发生了状态转移,当前字符应该被选,n
和m
同时向左上方移动
否则比较向左和向上的方向,从状态数组较大的一边转移而来
如果向左和向上的状态值相等,说明存在多个答案,需要向两边同时递归求解
对应的公共子序列为BCA
和BCB
代码
#include <iostream>
#include <vector>
using namespace std;
void print_lcs(int n, int m, string a, string b, vector<vector<int>> f, string s)
{
if (n > 0 && m > 0)
{
if (a[n - 1] == b[m - 1])
print_lcs(n - 1, m - 1, a, b, f, a[n - 1] + s);
else
{
if (f[n - 1][m] > f[n][m - 1])
print_lcs(n - 1, m, a, b, f, s);
else if (f[n - 1][m] < f[n][m - 1])
print_lcs(n, m - 1, a, b, f, s);
else
{
print_lcs(n - 1, m, a, b, f, s);
print_lcs(n, m - 1, a, b, f, s);
}
}
}
if (n == 0 || m == 0)
cout << s << endl;
}
int main()
{
string a, b;
cin >> a >> b;
int n = a.size(), m = b.size();
vector<vector<int>> f(n + 1, vector<int>(m + 1));
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= m; j ++ )
{
f[i][j] = max(f[i - 1][j], f[i][j - 1]);
if (a[i - 1] == b[j - 1])
f[i][j] = max(f[i][j], f[i - 1][j - 1] + 1);
}
cout << f[n][m] << endl;
print_lcs(n, m, a, b, f, "");
return 0;
}