求解所有最长公共子序列(c++)

已知求解最长公共子序列的状态数组,求解所有的最长公共子序列

思路

假设有字符串a = ABCBAb = BDCAB
状态数组f

  B D C A B
A 0 0 0 1 1 
B 1 1 1 1 2 
C 1 1 2 2 2 
B 1 1 2 2 3 
A 1 1 2 3 3

从右下角开始检查状态数组f,指向两个字符串的指针分别为n, m
如果a[n] == b[m],说明此时发生了状态转移,当前字符应该被选,nm同时向左上方移动
否则比较向左和向上的方向,从状态数组较大的一边转移而来
如果向左和向上的状态值相等,说明存在多个答案,需要向两边同时递归求解
在这里插入图片描述
对应的公共子序列为BCABCB

代码

#include <iostream>
#include <vector>

using namespace std;

void print_lcs(int n, int m, string a, string b, vector<vector<int>> f, string s)
{
    if (n > 0 && m > 0)
    {
        if (a[n - 1] == b[m - 1])
            print_lcs(n - 1, m - 1, a, b, f, a[n - 1] + s);
        else
        {
            if (f[n - 1][m] > f[n][m - 1])
                print_lcs(n - 1, m, a, b, f, s);
            else if (f[n - 1][m] < f[n][m - 1])
                print_lcs(n, m - 1, a, b, f, s);
            else
            {
                print_lcs(n - 1, m, a, b, f, s);
                print_lcs(n, m - 1, a, b, f, s);
            }
        }
    }
    if (n == 0 || m == 0)
        cout << s << endl;
}

int main()
{
    string a, b;
    cin >> a >> b;
    int n = a.size(), m = b.size();
    vector<vector<int>> f(n + 1, vector<int>(m + 1));
    for (int i = 1; i <= n; i ++ )
        for (int j = 1; j <= m; j ++ )
        {
            f[i][j] = max(f[i - 1][j], f[i][j - 1]);
            if (a[i - 1] == b[j - 1])
                f[i][j] = max(f[i][j], f[i - 1][j - 1] + 1);
        }
    cout << f[n][m] << endl;
    print_lcs(n, m, a, b, f, "");
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值