代码暂存ubuntu

xception.py

import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.model_zoo as model_zoo
from utils.batchnorm import SynchronizedBatchNorm2d

def fixed_padding(inputs, kernel_size, dilation):
    kernel_size_effective = kernel_size + (kernel_size - 1) * (dilation - 1)
    pad_total = kernel_size_effective - 1
    pad_beg = pad_total // 2
    pad_end = pad_total - pad_beg
    padded_inputs = F.pad(inputs, (pad_beg, pad_end, pad_beg, pad_end))
    return padded_inputs


class SeparableConv2d(nn.Module):
    def __init__(self, inplanes, planes, kernel_size=3, stride=1, dilation=1, bias=False, BatchNorm=None):
        super(SeparableConv2d, self).__init__()

        self.conv1 = nn.Conv2d(inplanes, inplanes, kernel_size, stride, 0, dilation,
                               groups=inplanes, bias=bias)
        self.bn = BatchNorm(inplanes)
        self.pointwise = nn.Conv2d(inplanes, planes, 1, 1, 0, 1, 1, bias=bias)

    def forward(self, x):
        x = fixed_padding(x, self.conv1.kernel_size[0], dilation=self.conv1.dilation[0])
        x = self.conv1(x)
        x = self.bn(x)
        x = self.pointwise(x)
        return x


class Block(nn.Module):
    def __init__(self, inplanes, planes, reps, stride=1, dilation=1, BatchNorm=None,
                 start_with_relu=True, grow_first=True, is_last=False):
        super(Block, self).__init__()

        if planes != inplanes or stride != 1:
            self.skip = nn.Conv2d(inplanes, planes, 1, stride=stride, bias=False)
            self.skipbn = BatchNorm(planes)
        else:
            self.skip = None

        self.relu = nn.ReLU(inplace=True)
        rep = []

        filters = inplanes
        if grow_first:
            rep.append(self.relu)
            rep.append(SeparableConv2d(inplanes, planes, 3, 1, dilation, BatchNorm=BatchNorm))
            rep.append(BatchNorm(planes))
            filters = planes

        for i in range(reps - 1):
            rep.append(self.relu)
            rep.append(SeparableConv2d(filters, filters, 3, 1, dilation, BatchNorm=BatchNorm))
            rep.append(BatchNorm(filters))

        if not grow_first:
            rep.append(self.relu)
            rep.append(SeparableConv2d(inplanes, planes, 3, 1, dilation, BatchNorm=BatchNorm))
            rep.append(BatchNorm(planes))

        if stride != 1:
            rep.append(self.relu)
            rep.append(SeparableConv2d(planes, planes, 3, 2, BatchNorm=BatchNorm))
            rep.append(BatchNorm(planes))

        if stride == 1 and is_last:
            rep.append(self.relu)
            rep.append(SeparableConv2d(planes, planes, 3, 1, BatchNorm=BatchNorm))
            rep.append(BatchNorm(planes))

        if not start_with_relu:
            rep = rep[1:]

        self.rep = nn.Sequential(*rep)

    def forward(self, inp):
        x = self.rep(inp)

        if self.skip is not None:
            skip = self.skip(inp)
            skip = self.skipbn(skip)
        else:
            skip = inp

        x = x + skip

        return x


class AlignedXception(nn.Module):
    """
    Modified Alighed Xception
    """
    def __init__(self, output_stride, BatchNorm,
                 pretrained=True):
        super(AlignedXception, self).__init__()

        if output_stride == 16:
            entry_block3_stride = 2
            middle_block_dilation = 1
            exit_block_dilations = (1, 2)
        elif output_stride == 8:
            entry_block3_stride = 1
            middle_block_dilation = 2
            exit_block_dilations = (2, 4)
        else:
            raise NotImplementedError


        # Entry flow
        self.conv1 = nn.Conv2d(3, 32, 3, stride=1, padding=1, bias=False)
        self.bn1 = BatchNorm(32)
        self.relu = nn.ReLU(inplace=True)
        #
        # self.conv2 = nn.Conv2d(32, 64, 3, stride=1, padding=1, bias=False)
        # self.bn2 = BatchNorm(64)

        self.block1 = Block(32, 64, reps=2, stride=1, BatchNorm=BatchNorm, start_with_relu=False)
        self.block2 = Block(64, 128, reps=2, stride=1, BatchNorm=BatchNorm, start_with_relu=False,grow_first=True)
        self.block3 = Block(128, 256, reps=2, stride=entry_block3_stride, BatchNorm=BatchNorm,
                            start_with_relu=True, grow_first=True, is_last=True)

        self.convlast1 = SeparableConv2d(256, 128, 3, stride=1, dilation=exit_block_dilations[1], BatchNorm=BatchNorm)
        self.bnlast1 = BatchNorm(128)

        self.convlast2 = SeparableConv2d(128, 64, 3, stride=1, dilation=exit_block_dilations[1], BatchNorm=BatchNorm)
        self.bnlast2 = BatchNorm(64)

        # Init weights
        self._init_weight()


    def forward(self, x):
        # Entry flow
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)

        # x = self.conv2(x)
        # x = self.bn2(x)
        # x = self.relu(x)

        x = self.block1(x)
        # add relu here
        x = self.relu(x)
        low_level_feat = x
        x = self.block2(x)
        x = self.block3(x)

        #--------------------
        x = self.convlast1(x)
        x = self.bnlast1(x)
        x = self.relu(x)

        x = self.convlast2(x)
        x = self.bnlast2(x)
        x = self.relu(x)

        return x, low_level_feat

    def _init_weight(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, SynchronizedBatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()



if __name__ == "__main__":
    import torch
    model = AlignedXception(BatchNorm=nn.BatchNorm2d, pretrained=False, output_stride=16)
    input = torch.rand(1, 3, 32, 32)
    output, low_level_feat = model(input)
    print(output.size())
    print(low_level_feat.size())
    # print(model)
    total = sum([param.nelement() for param in model.parameters()])
    print("Number of parameter: %.2f M " % (total / 1e6))

batchnorm.py

# -*- coding: utf-8 -*-
# File   : batchnorm.py
# Author : Jiayuan Mao
# Email  : maojiayuan@gmail.com
# Date   : 27/01/2018
#
# This file is part of Synchronized-BatchNorm-PyTorch.
# https://github.com/vacancy/Synchronized-BatchNorm-PyTorch
# Distributed under MIT License.

import collections

import torch
import torch.nn.functional as F

from torch.nn.modules.batchnorm import _BatchNorm
from torch.nn.parallel._functions import ReduceAddCoalesced, Broadcast

from .comm import SyncMaster

__all__ = ['SynchronizedBatchNorm1d', 'SynchronizedBatchNorm2d', 'SynchronizedBatchNorm3d']


def _sum_ft(tensor):
    """sum over the first and last dimention"""
    return tensor.sum(dim=0).sum(dim=-1)


def _unsqueeze_ft(tensor):
    """add new dementions at the front and the tail"""
    return tensor.unsqueeze(0).unsqueeze(-1)


_ChildMessage = collections.namedtuple('_ChildMessage', ['sum', 'ssum', 'sum_size'])
_MasterMessage = collections.namedtuple('_MasterMessage', ['sum', 'inv_std'])


class _SynchronizedBatchNorm(_BatchNorm):
    def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True):
        super(_SynchronizedBatchNorm, self).__init__(num_features, eps=eps, momentum=momentum, affine=affine)

        self._sync_master = SyncMaster(self._data_parallel_master)

        self._is_parallel = False
        self._parallel_id = None
        self._slave_pipe = None

    def forward(self, input):
        # If it is not parallel computation or is in evaluation mode, use PyTorch's implementation.
        if not (self._is_parallel and self.training):
            return F.batch_norm(
                input, self.running_mean, self.running_var, self.weight, self.bias,
                self.training, self.momentum, self.eps)

        # Resize the input to (B, C, -1).
        input_shape = input.size()
        input = input.view(input.size(0), self.num_features, -1)

        # Compute the sum and square-sum.
        sum_size = input.size(0) * input.size(2)
        input_sum = _sum_ft(input)
        input_ssum = _sum_ft(input ** 2)

        # Reduce-and-broadcast the statistics.
        if self._parallel_id == 0:
            mean, inv_std = self._sync_master.run_master(_ChildMessage(input_sum, input_ssum, sum_size))
        else:
            mean, inv_std = self._slave_pipe.run_slave(_ChildMessage(input_sum, input_ssum, sum_size))

        # Compute the output.
        if self.affine:
            # MJY:: Fuse the multiplication for speed.
            output = (input - _unsqueeze_ft(mean)) * _unsqueeze_ft(inv_std * self.weight) + _unsqueeze_ft(self.bias)
        else:
            output = (input - _unsqueeze_ft(mean)) * _unsqueeze_ft(inv_std)

        # Reshape it.
        return output.view(input_shape)

    def __data_parallel_replicate__(self, ctx, copy_id):
        self._is_parallel = True
        self._parallel_id = copy_id

        # parallel_id == 0 means master device.
        if self._parallel_id == 0:
            ctx.sync_master = self._sync_master
        else:
            self._slave_pipe = ctx.sync_master.register_slave(copy_id)

    def _data_parallel_master(self, intermediates):
        """Reduce the sum and square-sum, compute the statistics, and broadcast it."""

        # Always using same "device order" makes the ReduceAdd operation faster.
        # Thanks to:: Tete Xiao (http://tetexiao.com/)
        intermediates = sorted(intermediates, key=lambda i: i[1].sum.get_device())

        to_reduce = [i[1][:2] for i in intermediates]
        to_reduce = [j for i in to_reduce for j in i]  # flatten
        target_gpus = [i[1].sum.get_device() for i in intermediates]

        sum_size = sum([i[1].sum_size for i in intermediates])
        sum_, ssum = ReduceAddCoalesced.apply(target_gpus[0], 2, *to_reduce)
        mean, inv_std = self._compute_mean_std(sum_, ssum, sum_size)

        broadcasted = Broadcast.apply(target_gpus, mean, inv_std)

        outputs = []
        for i, rec in enumerate(intermediates):
            outputs.append((rec[0], _MasterMessage(*broadcasted[i * 2:i * 2 + 2])))

        return outputs

    def _compute_mean_std(self, sum_, ssum, size):
        """Compute the mean and standard-deviation with sum and square-sum. This method
        also maintains the moving average on the master device."""
        assert size > 1, 'BatchNorm computes unbiased standard-deviation, which requires size > 1.'
        mean = sum_ / size
        sumvar = ssum - sum_ * mean
        unbias_var = sumvar / (size - 1)
        bias_var = sumvar / size

        self.running_mean = (1 - self.momentum) * self.running_mean + self.momentum * mean.data
        self.running_var = (1 - self.momentum) * self.running_var + self.momentum * unbias_var.data

        return mean, bias_var.clamp(self.eps) ** -0.5


class SynchronizedBatchNorm1d(_SynchronizedBatchNorm):
    r"""Applies Synchronized Batch Normalization over a 2d or 3d input that is seen as a
    mini-batch.
    .. math::
        y = \frac{x - mean[x]}{ \sqrt{Var[x] + \epsilon}} * gamma + beta
    This module differs from the built-in PyTorch BatchNorm1d as the mean and
    standard-deviation are reduced across all devices during training.
    For example, when one uses `nn.DataParallel` to wrap the network during
    training, PyTorch's implementation normalize the tensor on each device using
    the statistics only on that device, which accelerated the computation and
    is also easy to implement, but the statistics might be inaccurate.
    Instead, in this synchronized version, the statistics will be computed
    over all training samples distributed on multiple devices.

    Note that, for one-GPU or CPU-only case, this module behaves exactly same
    as the built-in PyTorch implementation.
    The mean and standard-deviation are calculated per-dimension over
    the mini-batches and gamma and beta are learnable parameter vectors
    of size C (where C is the input size).
    During training, this layer keeps a running estimate of its computed mean
    and variance. The running sum is kept with a default momentum of 0.1.
    During evaluation, this running mean/variance is used for normalization.
    Because the BatchNorm is done over the `C` dimension, computing statistics
    on `(N, L)` slices, it's common terminology to call this Temporal BatchNorm
    Args:
        num_features: num_features from an expected input of size
            `batch_size x num_features [x width]`
        eps: a value added to the denominator for numerical stability.
            Default: 1e-5
        momentum: the value used for the running_mean and running_var
            computation. Default: 0.1
        affine: a boolean value that when set to ``True``, gives the layer learnable
            affine parameters. Default: ``True``
    Shape:
        - Input: :math:`(N, C)` or :math:`(N, C, L)`
        - Output: :math:`(N, C)` or :math:`(N, C, L)` (same shape as input)
    Examples:
        >>> # With Learnable Parameters
        >>> m = SynchronizedBatchNorm1d(100)
        >>> # Without Learnable Parameters
        >>> m = SynchronizedBatchNorm1d(100, affine=False)
        >>> input = torch.autograd.Variable(torch.randn(20, 100))
        >>> output = m(input)
    """

    def _check_input_dim(self, input):
        if input.dim() != 2 and input.dim() != 3:
            raise ValueError('expected 2D or 3D input (got {}D input)'
                             .format(input.dim()))
        super(SynchronizedBatchNorm1d, self)._check_input_dim(input)


class SynchronizedBatchNorm2d(_SynchronizedBatchNorm):
    r"""Applies Batch Normalization over a 4d input that is seen as a mini-batch
    of 3d inputs
    .. math::
        y = \frac{x - mean[x]}{ \sqrt{Var[x] + \epsilon}} * gamma + beta
    This module differs from the built-in PyTorch BatchNorm2d as the mean and
    standard-deviation are reduced across all devices during training.
    For example, when one uses `nn.DataParallel` to wrap the network during
    training, PyTorch's implementation normalize the tensor on each device using
    the statistics only on that device, which accelerated the computation and
    is also easy to implement, but the statistics might be inaccurate.
    Instead, in this synchronized version, the statistics will be computed
    over all training samples distributed on multiple devices.

    Note that, for one-GPU or CPU-only case, this module behaves exactly same
    as the built-in PyTorch implementation.
    The mean and standard-deviation are calculated per-dimension over
    the mini-batches and gamma and beta are learnable parameter vectors
    of size C (where C is the input size).
    During training, this layer keeps a running estimate of its computed mean
    and variance. The running sum is kept with a default momentum of 0.1.
    During evaluation, this running mean/variance is used for normalization.
    Because the BatchNorm is done over the `C` dimension, computing statistics
    on `(N, H, W)` slices, it's common terminology to call this Spatial BatchNorm
    Args:
        num_features: num_features from an expected input of
            size batch_size x num_features x height x width
        eps: a value added to the denominator for numerical stability.
            Default: 1e-5
        momentum: the value used for the running_mean and running_var
            computation. Default: 0.1
        affine: a boolean value that when set to ``True``, gives the layer learnable
            affine parameters. Default: ``True``
    Shape:
        - Input: :math:`(N, C, H, W)`
        - Output: :math:`(N, C, H, W)` (same shape as input)
    Examples:
        >>> # With Learnable Parameters
        >>> m = SynchronizedBatchNorm2d(100)
        >>> # Without Learnable Parameters
        >>> m = SynchronizedBatchNorm2d(100, affine=False)
        >>> input = torch.autograd.Variable(torch.randn(20, 100, 35, 45))
        >>> output = m(input)
    """

    def _check_input_dim(self, input):
        if input.dim() != 4:
            raise ValueError('expected 4D input (got {}D input)'
                             .format(input.dim()))
        super(SynchronizedBatchNorm2d, self)._check_input_dim(input)


class SynchronizedBatchNorm3d(_SynchronizedBatchNorm):
    r"""Applies Batch Normalization over a 5d input that is seen as a mini-batch
    of 4d inputs
    .. math::
        y = \frac{x - mean[x]}{ \sqrt{Var[x] + \epsilon}} * gamma + beta
    This module differs from the built-in PyTorch BatchNorm3d as the mean and
    standard-deviation are reduced across all devices during training.
    For example, when one uses `nn.DataParallel` to wrap the network during
    training, PyTorch's implementation normalize the tensor on each device using
    the statistics only on that device, which accelerated the computation and
    is also easy to implement, but the statistics might be inaccurate.
    Instead, in this synchronized version, the statistics will be computed
    over all training samples distributed on multiple devices.

    Note that, for one-GPU or CPU-only case, this module behaves exactly same
    as the built-in PyTorch implementation.
    The mean and standard-deviation are calculated per-dimension over
    the mini-batches and gamma and beta are learnable parameter vectors
    of size C (where C is the input size).
    During training, this layer keeps a running estimate of its computed mean
    and variance. The running sum is kept with a default momentum of 0.1.
    During evaluation, this running mean/variance is used for normalization.
    Because the BatchNorm is done over the `C` dimension, computing statistics
    on `(N, D, H, W)` slices, it's common terminology to call this Volumetric BatchNorm
    or Spatio-temporal BatchNorm
    Args:
        num_features: num_features from an expected input of
            size batch_size x num_features x depth x height x width
        eps: a value added to the denominator for numerical stability.
            Default: 1e-5
        momentum: the value used for the running_mean and running_var
            computation. Default: 0.1
        affine: a boolean value that when set to ``True``, gives the layer learnable
            affine parameters. Default: ``True``
    Shape:
        - Input: :math:`(N, C, D, H, W)`
        - Output: :math:`(N, C, D, H, W)` (same shape as input)
    Examples:
        >>> # With Learnable Parameters
        >>> m = SynchronizedBatchNorm3d(100)
        >>> # Without Learnable Parameters
        >>> m = SynchronizedBatchNorm3d(100, affine=False)
        >>> input = torch.autograd.Variable(torch.randn(20, 100, 35, 45, 10))
        >>> output = m(input)
    """

    def _check_input_dim(self, input):
        if input.dim() != 5:
            raise ValueError('expected 5D input (got {}D input)'
                             .format(input.dim()))
        super(SynchronizedBatchNorm3d, self)._check_input_dim(input)

comm.py

# -*- coding: utf-8 -*-
# File   : comm.py
# Author : Jiayuan Mao
# Email  : maojiayuan@gmail.com
# Date   : 27/01/2018
#
# This file is part of Synchronized-BatchNorm-PyTorch.
# https://github.com/vacancy/Synchronized-BatchNorm-PyTorch
# Distributed under MIT License.

import queue
import collections
import threading

__all__ = ['FutureResult', 'SlavePipe', 'SyncMaster']


class FutureResult(object):
    """A thread-safe future implementation. Used only as one-to-one pipe."""

    def __init__(self):
        self._result = None
        self._lock = threading.Lock()
        self._cond = threading.Condition(self._lock)

    def put(self, result):
        with self._lock:
            assert self._result is None, 'Previous result has\'t been fetched.'
            self._result = result
            self._cond.notify()

    def get(self):
        with self._lock:
            if self._result is None:
                self._cond.wait()

            res = self._result
            self._result = None
            return res


_MasterRegistry = collections.namedtuple('MasterRegistry', ['result'])
_SlavePipeBase = collections.namedtuple('_SlavePipeBase', ['identifier', 'queue', 'result'])


class SlavePipe(_SlavePipeBase):
    """Pipe for master-slave communication."""

    def run_slave(self, msg):
        self.queue.put((self.identifier, msg))
        ret = self.result.get()
        self.queue.put(True)
        return ret


class SyncMaster(object):
    """An abstract `SyncMaster` object.
    - During the replication, as the data parallel will trigger an callback of each module, all slave devices should
    call `register(id)` and obtain an `SlavePipe` to communicate with the master.
    - During the forward pass, master device invokes `run_master`, all messages from slave devices will be collected,
    and passed to a registered callback.
    - After receiving the messages, the master device should gather the information and determine to message passed
    back to each slave devices.
    """

    def __init__(self, master_callback):
        """
        Args:
            master_callback: a callback to be invoked after having collected messages from slave devices.
        """
        self._master_callback = master_callback
        self._queue = queue.Queue()
        self._registry = collections.OrderedDict()
        self._activated = False

    def __getstate__(self):
        return {'master_callback': self._master_callback}

    def __setstate__(self, state):
        self.__init__(state['master_callback'])

    def register_slave(self, identifier):
        """
        Register an slave device.
        Args:
            identifier: an identifier, usually is the device id.
        Returns: a `SlavePipe` object which can be used to communicate with the master device.
        """
        if self._activated:
            assert self._queue.empty(), 'Queue is not clean before next initialization.'
            self._activated = False
            self._registry.clear()
        future = FutureResult()
        self._registry[identifier] = _MasterRegistry(future)
        return SlavePipe(identifier, self._queue, future)

    def run_master(self, master_msg):
        """
        Main entry for the master device in each forward pass.
        The messages were first collected from each devices (including the master device), and then
        an callback will be invoked to compute the message to be sent back to each devices
        (including the master device).
        Args:
            master_msg: the message that the master want to send to itself. This will be placed as the first
            message when calling `master_callback`. For detailed usage, see `_SynchronizedBatchNorm` for an example.
        Returns: the message to be sent back to the master device.
        """
        self._activated = True

        intermediates = [(0, master_msg)]
        for i in range(self.nr_slaves):
            intermediates.append(self._queue.get())

        results = self._master_callback(intermediates)
        assert results[0][0] == 0, 'The first result should belongs to the master.'

        for i, res in results:
            if i == 0:
                continue
            self._registry[i].result.put(res)

        for i in range(self.nr_slaves):
            assert self._queue.get() is True

        return results[0][1]

    @property
    def nr_slaves(self):
        return len(self._registry)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值