pandas的一些题

这篇博客展示了如何利用Pandas库进行数据操作。首先介绍了数据集f500.csv,然后通过打印数据框的类型和形状了解数据基本信息。接着,通过value_counts()方法统计了国家分布,重点分析了印度和北美三国的公司数量。最后,选取了部分公司,展示了它们在排名和行业上的变化,并获取了排名底部公司的详细信息。
摘要由CSDN通过智能技术生成

第1关:数据集介绍

import pandas as pd
f500 = pd.read_csv('f500.csv',index_col=0)
f500.index.name = None

# 请在此添加代码,分别打印f500的类型和形状大小
#********** Begin **********#
print(type(f500))
print(f500.shape)
#********** End **********#

第5关:值统计的方法

import pandas as pd
f500 = pd.read_csv('f500.csv',index_col=0)
f500.index.name = None
f500_sel = f500.iloc[[0,1,2,3,4,8]]

# 请在此添加代码
#********** Begin **********#
countries = f500_sel["country"]

country_counts = countries.value_counts()

print(countries)
print(country_counts)



#********** End **********#

第6关:通过标签从series中选择项

import pandas as pd
f500 = pd.read_csv('f500.csv',index_col=0)
f500.index.name = None
countries = f500['country']
countries_counts = countries.value_counts()

# 请在此添加代码
#********** Begin **********#
india = countries_counts["India"]
north_america = countries_counts.loc[["USA","Canada","Mexico"]]
print(india)

print(north_america)
#********** End **********#



#********** End **********#

第7关:综合挑战

#i  在educoder.net上测试不了

import pandas as pd
f500 = pd.read_csv('f500.csv',index_col=0)
f500.index.name = None

#i-------------
countries = f500['country']
countries_counts = countries.value_counts()

#india = countries_counts["India"]
#north_america = countries_counts.loc[["USA","Canada","Mexico"]]
# 请在此添加代码
#********** Begin **********#
big_movers = f500.loc[["Aviva","HP","JD.com","BHP Billiton"],["rank","previous_rank"]]
print(big_movers)

bottom_companies = f500.loc["National Grid":"AutoNation",["rank","sector","country"]]
print(bottom_companies)
#********** End **********#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值