K 个一组翻转链表C++题解
1.题目描述
给你链表的头节点 head ,每 k 个节点一组进行翻转,请你返回修改后的链表。
k 是一个正整数,它的值小于或等于链表的长度。如果节点总数不是 k 的整数倍,那么请将最后剩余的节点保持原有顺序。
你不能只是单纯的改变节点内部的值,而是需要实际进行节点交换
示例 1:
输入:head = [1,2,3,4,5], k = 2
输出:[2,1,4,3,5]
示例 2:
输入:head = [1,2,3,4,5], k = 3
输出:[3,2,1,4,5]
2.参数条件
链表中的节点数目为 n
1 <= k <= n <= 5000
0 <= Node.val <= 1000
3.题目分析
-
首先,当k =1时,链表无需反转直接返回即可。所以我们着重分析 k >=2时的情况。
-
当k >= 2时, 我们将全部链表每k个划分成一段,而链表的总长度n是要大于等于k的,所以划分的段数是要大于等于1的。
-
现在我们来讨论一下具体的一段该怎么反转。中间部分是很好分析的:
假设:中间部分的链表关系是:
…A——>B———>C——>
那么我们反转链表就行了,也就是把他们的关系变为:
…A<——B ( 此处断开)C——>
代码就是:
//此处代码只是方便理解
LeftNode = A; //A location
LeftNodeNext = LeftNode->next; // B location
LeftNode3 = LeftNodeNext->next; //C location
LeftNodeNext ->next = LeftNode; // B——>A
LeftNode = LeftNodeNext; //更新LeftNode 到B
LeftNodeNext = LeftNode3 ;
LeftNode3 = LeftNode3 ->next;
这里我用了三个链表指针,主要是因为,在将A与B关系反转后,如果只用两个链表指针我们就会丢失掉C的位置,所以我们需要第三个链表指针来记录C的位置,以便可以在下一次将进行B<——C的操作,进而可以把整段的链表进行反转。
- 接下来我们再来分析一下每一段开头的部分:
例如,K=3,链表关系如下:
A——>B——>C——>D——>E——>F——>
从D开始我进行的标粗,因为他属于下一段,为什么要写出下一段的链表关系呢 ? 因为这里我们需要使用到下一段的链表。
我们知道反转后的关系应该是:
C——>B——>A——>F——>E——>D
是的反转后A的下一个链表应该是F!!,他是下一段链表的结尾。
所以这就要求我们在反转的开头就要知道F的链表指针!(也只有开头部分会用到)
我们的做法是:再添加一个右链表指针,让他指向F。换句话说,让RightNode领先LeftNode 的步长是(2 *k -1)。所以,在程序的最开始我们先让RightNode走2k-1步,再开始进行后续的反转,也就有:
while( RightNode != nullptr && steps < 2 * k -1){
RightNode = RightNode->next;
steps++;
if( steps == k -1)
HeadNoed = RightNode; //这个主要用于记录返回的头指针
}
于是,在每段的开头部分我们可以让LeftNode指向RightNode 的位置
LeftNode->next = RightNodeHead;
- 那么最后我们只需讨论一下每一段的尾部的部分:
我们仍然假设K=3,反转前的关系是:B——>C——>D
C是尾部,D是下一段的开头部分,我们期待的反转后的结果是:C——>B …( 断开 ) D
B与C的反转和中间部分一样,重要的是我们如何跳转到下一段的开头,显然和中间部分一样的我们需要记录下D的位置,然后将LeftNode更新到D处,这样就进入了下一段的开头。
//此处代码只是方便理解
LeftNode = B; //B location
LeftNodeNext = LeftNode->next; // C location
LeftNode3 = LeftNodeNext->next; //D location
LeftNodeNext ->next = LeftNode; // B——>A
LeftNode = LeftNodeNext; //更新LeftNode到C
LeftNodeNext = LeftNode3;
LeftNode3 = LeftNode3 ->next;
//比中间部分多的代码:
LeftNode = LeftNodeNext; /更新LeftNode到D
LeftNodeNext = LeftNode3;
LeftNode3 = LeftNode3 ->next;
- 还有一点需要注意的是:当我们对LeftNode向右移动进行反转操作时,需保证LeftNode进入下一个链表段开头时,RightNode也要进入对应下一个链表段的结尾。即RightNode和LeftNode在完成一个链表段的反转后,他们移动的步长要一致,这样才能保证在开头部分,LeftNode指向RightNode。
4.何时结束?
何时结束是一个非常关键的问题,但我们只需考虑处理最后一个链表段时所需的反转处理。
- 如果n是k的整数倍,那么我们需要在RightNode变为空时,记录反转处理即将完成(使用non_over 记录)。并在正常完成下一段的反转后结束所有操作,然后返回处理完成后的链表头即可。
- 如果n不是k的整数倍,那么会有一个多余段(长度小于k)不需要反转操作。那么RightNode也会在移动一定步长(这个步长<k)后变为空,那么我们也记录下处理即将完成(non_over)。但是不同的是,在进行下一段链表反转操作(也即最后一段链表反转)的开始部分,LeftNode不再指向RightNode,而是指向多余段的链表头。所以我们需要一个链表指针RightNodeHead,记录每次RightNode所在段的链表头。
5.代码实现
题目分析结束,那么我们就开始解题吧,在解题的过程中,会发现需要对LeftNode3 的访问越界问题进行考虑,当然着只会在最后一次反转中出现。
这里主要是C++的实现:
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode() : val(0), next(nullptr) {}
* ListNode(int x) : val(x), next(nullptr) {}
* ListNode(int x, ListNode *next) : val(x), next(next) {}
* };
*/
class Solution {
public:
ListNode* reverseKGroup(ListNode* head, int k) {
if( k == 1)
return head;
ListNode* RightNode = head;
ListNode* LeftNode = head;
ListNode* HeadNoed = nullptr;
ListNode* LeftNext = nullptr;
ListNode* LeftNode3 = nullptr;
ListNode* RightNodeHead = nullptr;
int steps = 0;
bool non_over = true;
while( RightNode != nullptr && steps < 2 * k -1){
RightNode = RightNode->next;
steps++;
if( steps == k -1)
HeadNoed = RightNode;
}
if( !(steps == 2 * k -1 && RightNode != nullptr) )
RightNodeHead = HeadNoed->next; //长度小于2段,结束反转预警,需要记录RightNode所在段的链表头
LeftNext = head->next;
LeftNode3 = LeftNext->next;
while( non_over){
if(RightNode == nullptr){
non_over = false; //RightNode 说明是最后一次反转
LeftNode->next = RightNodeHead;
}
else
LeftNode->next = RightNode;
for( int j = 0; j < k -1 ; ){
j++;
LeftNext->next = LeftNode;
LeftNode = LeftNext;
LeftNext = LeftNode3;
if( non_over || j != k-1)
LeftNode3 = LeftNext->next;
}
if( non_over ){
LeftNode = LeftNext;
LeftNext = LeftNode3;
LeftNode3 = LeftNext->next;
}
steps = 0;
if( non_over)
RightNodeHead = RightNode->next;
while( RightNode != nullptr && steps < k){
RightNode = RightNode->next;
steps++;
}
}
return HeadNoed;
}
};
- 上述代码可以提交成功,同样解题思路也可以使用JAVA/Python/Go进行编写
时间复杂度
空间复杂度: