DeepLearning学习随记(一)稀疏自编码器

本文介绍了Stanford教授Andrew Ng的Deep Learning教程,重点关注稀疏自编码器的构建和作用。自编码器是一种非监督学习算法,通过BP算法使隐藏层的激活值接近输入值,以达到数据降维和稀疏性的目标。通过调整隐藏层单元的平均激活值,利用KL距离衡量稀疏性,并修改BP网络的残差计算公式。作者对比了稀疏自编码器与PCA的相似性,并提供了练习案例,参考了其他博主的Matlab实现。
摘要由CSDN通过智能技术生成

首先给大家分享一个巨牛巨牛的人工智能教程,是我无意中发现的。教程不仅零基础,通俗易懂,而且非常风趣幽默,还时不时有内涵段子,像看小说一样,哈哈~我正在学习中,觉得太牛了,所以分享给大家!点这里可以跳转到教程

               

主要参考资料是Stanford 教授 Andrew Ng 的 Deep Learning 教程讲义:http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial。这个讲义已经有人翻译了(赞一个),可以参见邓侃的新浪博客http://blog.sina.com.cn/s/blog_46d0a3930101h6nf.html。另外,博客园里有一个前辈关于讲义中练习的一系列文章,在具体实现时可以参照下:http://www.cnblogs.com/tornadomeet/category

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值