代码随想录算法训练营Day43 ||leetCode 1049. 最后一块石头的重量 II || 494. 目标和 || 474.一和零

文章讲述了如何将题目416.分割等和子集的变种应用到lastStoneWeightII中的01背包问题,以及如何解决494.目标和问题,涉及正负数和背包容量计算,还讨论了474.一和零中字符串中01数量的二维动态规划求解。

1049. 最后一块石头的重量 II 

这道题经过分析后可以发现,其实可以看做上一道题(416. 分割等和子集)的变种。求解在一半容量的情况下,最多能装多重的石头。剩余值就是差值了。

class Solution {
public:
    int lastStoneWeightII(vector<int>& stones) {
        int sum = 0;
        vector<int> dp(15001, 0);
        for (int i = 0; i < stones.size(); i++) {
            sum += stones[i];
        }
        int target = sum / 2;

        // 开始 01背包
        for(int i = 0; i < stones.size(); i++) {
            for(int j = target; j >= stones[i]; j--) { // 每一个元素一定是不可重复放入,所以从大到小遍历
                dp[j] = max(dp[j], dp[j - stones[i]] +stones[i]);
            }
        }
        return sum - dp[target] - dp[target];
    }
};

494. 目标和 

思路很难想,此处可直接看解析:

假设正数的总和为x,那么负数对应的正数,其对应的总和就是sum - x。

所以我们要求的是 x - (sum - x) = target

x = (target + sum) / 2

此时问题就转化为,装满容量为x的背包,有几种方法

这里的x,就是bagSize,也就是我们后面要求的背包容量。

大家看到(target + sum) / 2 应该担心计算的过程中向下取整有没有影响。

这么担心就对了,例如sum 是5,S是2的话其实就是无解的,所以:

class Solution {
public:
    int findTargetSumWays(vector<int>& nums, int S) {
        //正数集合a,负数集合b。a+b=sum,a-b=S,a=(S+sum)/2=target,求满足的个数
        int sum = 0;
        for (int i = 0; i < nums.size(); i++) sum += nums[i];
        if (abs(S) > sum) return 0; // 此时没有方案
        if ((S + sum) % 2 == 1) return 0; // 此时没有方案
        int bagSize = (S + sum) / 2;
        vector<int> dp(bagSize + 1, 0);
        dp[0] = 1;
        for (int i = 0; i < nums.size(); i++) {
            for (int j = bagSize; j >= nums[i]; j--) {
                dp[j] += dp[j - nums[i]]; // dp[j - nums[i]]表示加入num[i]有几种方式,dp[j]是原先的方式,加一块是现在的方式
            }
        }
        return dp[bagSize];
    }
};

474.一和零  

读取每个字符串中01个数,然后在二维DP数组中更新

class Solution {
public:
    int findMaxForm(vector<string>& strs, int m, int n) {
        vector<vector<int>> dp (m+1,vector(n+1,0));
        for (string str:strs){
            int oneNum = 0, zeroNum = 0;
            for (char c : str){
                if (c=='0') zeroNum++;
                else oneNum++;
            }
            for (int i = m ; i >= zeroNum; i--){
                for (int j = n; j >= oneNum;j--){
                    dp[i][j]=max(dp[i][j],dp[i-zeroNum][j-oneNum]+1);
                }
            }
        }
        return dp[m][n];
    }
};

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值