VGG 改进:VGG-Transformer混合模型(2024最新改进)

目录

1. 介绍

VGG-Transformer混合架构

使用示例

2. 改进

3. 完整代码

Tips:融入模块后的网络经过测试,可以直接使用,设置好输入和输出的图片维度即可

1. 介绍

本文实现了一个结合VGG卷积神经网络和最新Transformer模块的混合架构,特别适用于计算机视觉任务。下面我将详细解析这个实现的各个组成部分。

RMSNorm (Root Mean Square Layer Normalization)

  • 作用:替代传统的LayerNorm,计算更高效且效果相当

  • 特点

    • 只计算输入的均方根值进行归一化

    • 使用可学习的缩放参数

    • 计算量比LayerNorm少约20%

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

听风吹等浪起

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值