EfficientNet 改进:添加高效轻量级通道注意力机制(FFCM)

目录

1. 模型讲解

什么是FFCM?

FFCM的前向传播

将FFCM集成到EfficientNet

创建带有FFCM的EfficientNet模型

为什么FFCM有效?

实际应用示例

2. 完整代码

3.网络结构


在计算机视觉领域,注意力机制已经成为提升模型性能的重要工具。

今天我们将深入探讨一种名为FFCM(Fast and Lightweight Channel Attention Mechanism)的高效通道注意力机制,并展示如何将其集成到EfficientNet模型中。

1. 模型讲解

什么是FFCM?

FFCM是一种快速且轻量级的通道注意力机制,它结合了局部和全局通道交互的优势:

class FFCM(nn.Module):
    """
    Fast and Lightweight Channel Attention Mechanism (FFCM)
    """
    def __init__(self, channels, reduction_ratio=16, local_window_size=3):
        super(FFCM
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

听风吹等浪起

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值