DenseUNet 改进:结合APBottleneck(注意力瓶颈模块)

1.代码讲解

今天我们将深入分析一个名为DenseUNet的神经网络架构,它巧妙地将DenseNet的强大特征提取能力与UNet的经典U型结构相结合,并加入了注意力机制来提升模型性能。

这个网络特别适用于图像分割任务,能够处理不同数量的输入和输出通道。

网络架构总览

DenseUNet主要由以下几个关键组件构成:

  1. ​编码器部分​​:基于DenseNet-161的预训练结构
  2. ​解码器部分​​:自定义的上采样路径
  3. ​注意力机制​​:通过APBottleneck实现
  4. ​跳跃连接​​:保留不同尺度的特征信息

核心组件详解

1. APBottl

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

听风吹等浪起

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值