1.代码讲解
今天我们将深入分析一个名为DenseUNet的神经网络架构,它巧妙地将DenseNet的强大特征提取能力与UNet的经典U型结构相结合,并加入了注意力机制来提升模型性能。
这个网络特别适用于图像分割任务,能够处理不同数量的输入和输出通道。
网络架构总览
DenseUNet主要由以下几个关键组件构成:
- 编码器部分:基于DenseNet-161的预训练结构
- 解码器部分:自定义的上采样路径
- 注意力机制:通过APBottleneck实现
- 跳跃连接:保留不同尺度的特征信息