EfficientNet 改进:与Transformer结合的图像分类模型

1.介绍

在计算机视觉领域,EfficientNet因其高效的网络架构设计而广受欢迎。

本文将深入分析一个结合EfficientNet主干和Transformer分类头的创新模型实现。

模型概述

这个实现将EfficientNet的高效特征提取能力与Transformer的强大序列建模能力相结合,主要包含以下几个核心组件:

  1. ​基础卷积模块​​:包括Swish激活函数和ConvBnAct组合模块
  2. ​MBConv模块​​:EfficientNet的核心构建块
  3. ​Squeeze-Excitation注意力机制​​:通道注意力模块
  4. ​Transformer分类头​​:替代传统全连接层的创新设计
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

听风吹等浪起

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值