FCN改进:CBAM注意力机制增强FCN-ResNet50分割模型

1.介绍

在这篇博客中,我将详细介绍一个结合了CBAM(Convolutional Block Attention Module)注意力机制的FCN-ResNet50语义分割模型的实现代码。

代码概述

这段代码实现了一个基于FCN-ResNet50架构的语义分割模型,并在ResNet50的各个层级后添加了CBAM注意力模块。主要包含以下几个部分:

  1. CBAM注意力模块的实现

  2. FCN-ResNet50模型的加载和修改

  3. 前向传播测试

1. CBAM注意力模块

CBAM(Convolutional Block Attention Module)是一种轻量级的注意力模块,它结合了通道注意力和空间注意力机制。

class CBAM(nn.Module):
    def __init__(self, channels, reduction_ratio=16):
        super(CBAM, self).__init__()
        self.channel_attention = nn.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

听风吹等浪起

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值