建模小白的自学分享之路
注:本文是对数学建模的学习笔记,来源于清风“数学建模算法讲解”
层次分析法笔记
一.层次分析法介绍
层次分析法,The analytic hierarchy process, 简称AHP。是评价类问题的解决方法之一。
二.层次分析法的方法实现
1.简单原理实现
层次分析法的主要方法是对需要分析的评价指标利用打分得到权重矩阵,通过权重矩阵得到评价分数。
指标权重 | 华科 | 武大 | |
---|---|---|---|
学习氛围 | 0.4 | 0.7 | 0.3 |
就业前景 | 0.3 | 0.5 | 0.5 |
男女比例 | 0.2 | 0.3 | 0.7 |
校园景色 | 0.1 | 0.25 | 0.75 |
上面这个表格就是一个很好的例子(老师上课用的)。你要计算每一列的得分,就可以把各项指标的得分乘以他们的权重,如华科,他的最终得分就是0.7x0.4+0.5x0.3+0.3x0.2+0.25x0.1=0.515。
2.复杂一般实现
在前面,我们所使用的具体权重完全可以由要求方或自己得出。但当你的因子比较多时,也就是矩阵比较复杂时,这种简单的判断就没有那么准确了。所以当矩阵比较复杂时我们采用的是判断矩阵的方法。以下用的都是老师上课用过的例子。具体可以去看老师上课的内容。
判断矩阵
我们说判断因子较多的时候,一次性考虑往往是不全面的,在重要性上往往不一致。因此我们采用两两比较的方式进行判断。我们使用这样一个示例表格。
指标权重 | 苏杭 | 北戴河 | 桂林 | |
---|---|---|---|---|
景色 | ||||
花费 | ||||
居住 | ||||
饮食 | ||||
交通 |
以及这样的评判标准表
标度 | 含义 |
---|---|
1 | 同等重要 |
3 | 稍微重要 |
5 | 明显重要 |
7 | 强烈重要 |
9 | 极端重要 |
2,4,6,8 | 上述判断的中值重要程度 |
倒数 | A和B相比标度是3,那么B和A相比就是1/3 |
按照我们之前的那种顺序关系,我们可以先求指标权重这一列。
我们可以用下面这个表格求权重指标。
景色 | 花费 | 居住 | 饮食 | 交通 | |
---|---|---|---|---|---|
景色 | |||||
花费 | |||||
居住 | |||||
饮食 | |||||
交通 |
我们先假设一些数据
景色 | 花费 | 居住 | 饮食 | 交通 | |
---|---|---|---|---|---|
景色 | 1 | 1/2 | 4 | 3 | 3 |
花费 | 2 | 1 | 7 | 5 | 5 |
居住 | 1/4 | 1/7 | 1 | 1/2 | 1/3 |
饮食 | 1/3 | 1/5 | 2 | 1 | 1 |
交通 |