思路
这道题说了很多,意思就是让求出该图最小生成数的最大边,当然可以用krus来做,但这节课我们学的是dij,用dij就要这么做:
这是一个最短路的变形问题,𝑑𝑖𝑠 𝑦 > 𝑑𝑖𝑠 𝑥 + 𝑤 是对于 最短路变形问题的松弛条件, 询问 1~n 经过的边权最大值的最小值 ,在该题中,𝑑𝑖𝑠 𝑥 表示 1~x 边权最大值的最小值 ,就在 Dijkstra 模板上将松弛条件修改为𝑑𝑖𝑠 𝑦 > max (𝑑𝑖𝑠 𝑥 , 𝑤) 即可
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define inf 10000000
using namespace std;
int t1,t2,t3,n,m,s,head[100005],vis[100005],dis[100005],tot;
//priority_queue<pair<int,int>>qe;
priority_queue<pair<int,
int>, vector<pair<int, int> >, greater<pair<int, int>> > qe;
struct edge
{
int to,w,next;
}e[400005];
void add(int a,int b,int c)
{
e[++tot].to=b,e[tot].w=c;
e[tot].next=head[a];
head[a]=tot;
}
void solve()
{
int v;
for(int i=1;i<=n;i++)
vis[i]=0,dis[i]=inf;
dis[1]=0;
qe.push(make_pair(0,1));
while (qe.size())
{
v=qe.top().second;qe.pop();
if(vis[v])continue;
vis[v]=1;
for(int i=head[v];i!=-1;i=e[i].next)
{
int u=e[i].to;
if(dis[u]>max(dis[v],e[i].w))
{
dis[u]=max(dis[v],e[i].w);
qe.push(make_pair(dis[u],u));
}
}
}
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
head[i]=-1;
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&t1,&t2,&t3);
add(t1,t2,t3);
add(t2,t1,t3); }
solve();
printf("%d\n",dis[n]);
//system("pause");
return 0;
}