【深度学习笔记】7_8 Adam算法

7.8 Adam算法

Adam算法在RMSProp算法基础上对小批量随机梯度也做了指数加权移动平均 [1]。下面我们来介绍这个算法。

所以Adam算法可以看做是RMSProp算法与动量法的结合。adam算法是一种基于“momentum”思想的随机梯度下降优化方法,通过迭代更新之前每次计算梯度的一阶moment和二阶moment,并计算滑动平均值,后用来更新当前的参数。这种思想结合了Adagrad算法的处理稀疏型数据,又结合了RMSProp算法的可以处理非稳态的数据。

小tips:跟我一样基础不太好的看起来比较难以理解,建议搭配视频食用,可参考这个优化算法系列合集,个人觉得比较容易听懂

7.8.1 算法

Adam算法使用了动量变量 v t \boldsymbol{v}_t vt和RMSProp算法中小批量随机梯度按元素平方的指数加权移动平均变量 s t \boldsymbol{s}_t st,并在时间步0将它们中每个元素初始化为0。给定超参数 0 ≤ β 1 < 1 0 \leq \beta_1 < 1 0β1<1(算法作者建议设为0.9),时间步 t t t的动量变量 v t \boldsymbol{v}_t vt即小批量随机梯度 g t \boldsymbol{g}_t gt的指数加权移动平均:

v t ← β 1 v t − 1 + ( 1 − β 1 ) g t . \boldsymbol{v}_t \leftarrow \beta_1 \boldsymbol{v}_{t-1} + (1 - \beta_1) \boldsymbol{g}_t. vtβ1vt1+(1β1)gt.

和RMSProp算法中一样,给定超参数 0 ≤ β 2 < 1 0 \leq \beta_2 < 1 0β2<1(算法作者建议设为0.999),
将小批量随机梯度按元素平方后的项 g t ⊙ g t \boldsymbol{g}_t \odot \boldsymbol{g}_t gtgt做指数加权移动平均得到 s t \boldsymbol{s}_t st

s t ← β 2 s t − 1 + ( 1 − β 2 ) g t ⊙ g t . \boldsymbol{s}_t \leftarrow \beta_2 \boldsymbol{s}_{t-1} + (1 - \beta_2) \boldsymbol{g}_t \odot \boldsymbol{g}_t. stβ2st1+(1β2)gtgt.

由于我们将 v 0 \boldsymbol{v}_0 v0 s 0 \boldsymbol{s}_0 s0中的元素都初始化为0,
在时间步 t t t我们得到 v t = ( 1 − β 1 ) ∑ i = 1 t β 1 t − i g i \boldsymbol{v}_t = (1-\beta_1) \sum_{i=1}^t \beta_1^{t-i} \boldsymbol{g}_i vt=(1β1)i=1tβ1tigi。将过去各时间步小批量随机梯度的权值相加,得到 ( 1 − β 1 ) ∑ i = 1 t β 1 t − i = 1 − β 1 t (1-\beta_1) \sum_{i=1}^t \beta_1^{t-i} = 1 - \beta_1^t (1β1)i=1tβ1ti=1β1t。需要注意的是,当 t t t较小时,过去各时间步小批量随机梯度权值之和会较小。例如,当 β 1 = 0.9 \beta_1 = 0.9 β1=0.9时, v 1 = 0.1 g 1 \boldsymbol{v}_1 = 0.1\boldsymbol{g}_1 v1=0.1g1。为了消除这样的影响,对于任意时间步 t t t,我们可以将 v t \boldsymbol{v}_t vt再除以 1 − β 1 t 1 - \beta_1^t 1β1t,从而使过去各时间步小批量随机梯度权值之和为1。这也叫作偏差修正。在Adam算法中,我们对变量 v t \boldsymbol{v}_t vt s t \boldsymbol{s}_t st均作偏差修正:

v ^ t ← v t 1 − β 1 t , \hat{\boldsymbol{v}}_t \leftarrow \frac{\boldsymbol{v}_t}{1 - \beta_1^t}, v^t1β1tvt,

s ^ t ← s t 1 − β 2 t . \hat{\boldsymbol{s}}_t \leftarrow \frac{\boldsymbol{s}_t}{1 - \beta_2^t}. s^t1β2tst.

接下来,Adam算法使用以上偏差修正后的变量 v ^ t \hat{\boldsymbol{v}}_t v^t s ^ t \hat{\boldsymbol{s}}_t s^t,将模型参数中每个元素的学习率通过按元素运算重新调整:

g t ′ ← η v ^ t s ^ t + ϵ , \boldsymbol{g}_t' \leftarrow \frac{\eta \hat{\boldsymbol{v}}_t}{\sqrt{\hat{\boldsymbol{s}}_t} + \epsilon}, gts^t +ϵηv^t,

其中 η \eta η是学习率, ϵ \epsilon ϵ是为了维持数值稳定性而添加的常数,如 1 0 − 8 10^{-8} 108。和AdaGrad算法、RMSProp算法以及AdaDelta算法一样,目标函数自变量中每个元素都分别拥有自己的学习率。最后,使用 g t ′ \boldsymbol{g}_t' gt迭代自变量:

x t ← x t − 1 − g t ′ . \boldsymbol{x}_t \leftarrow \boldsymbol{x}_{t-1} - \boldsymbol{g}_t'. xtxt1gt.

7.8.2 从零开始实现

我们按照Adam算法中的公式实现该算法。其中时间步 t t t通过hyperparams参数传入adam函数。

%matplotlib inline
import torch
import sys
sys.path.append("..") 
import d2lzh_pytorch as d2l

features, labels = d2l.get_data_ch7()

def init_adam_states():
    v_w, v_b = torch.zeros((features.shape[1], 1), dtype=torch.float32), torch.zeros(1, dtype=torch.float32)
    s_w, s_b = torch.zeros((features.shape[1], 1), dtype=torch.float32), torch.zeros(1, dtype=torch.float32)
    return ((v_w, s_w), (v_b, s_b))

def adam(params, states, hyperparams):
    beta1, beta2, eps = 0.9, 0.999, 1e-6
    for p, (v, s) in zip(params, states):
        v[:] = beta1 * v + (1 - beta1) * p.grad.data
        s[:] = beta2 * s + (1 - beta2) * p.grad.data**2
        v_bias_corr = v / (1 - beta1 ** hyperparams['t'])
        s_bias_corr = s / (1 - beta2 ** hyperparams['t'])
        p.data -= hyperparams['lr'] * v_bias_corr / (torch.sqrt(s_bias_corr) + eps)
    hyperparams['t'] += 1

使用学习率为0.01的Adam算法来训练模型。

d2l.train_ch7(adam, init_adam_states(), {'lr': 0.01, 't': 1}, features, labels)

输出:

loss: 0.245370, 0.065155 sec per epoch

在这里插入图片描述

7.8.3 简洁实现

通过名称为“Adam”的优化器实例,我们便可使用PyTorch提供的Adam算法。

d2l.train_pytorch_ch7(torch.optim.Adam, {'lr': 0.01}, features, labels)

输出:

loss: 0.242066, 0.056867 sec per epoch

在这里插入图片描述

小结

  • Adam算法在RMSProp算法的基础上对小批量随机梯度也做了指数加权移动平均。
  • Adam算法使用了偏差修正。

参考文献

[1] Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.


注:除代码外本节与原书此节基本相同,原书传送门

  • 33
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值