人工智能基础
文章平均质量分 83
人工智能学习记录
RIKI_1
这个作者很懒,什么都没留下…
展开
-
【人工智能学习】8_人工智能其他通用技术
搭建知识图谱的核心就在于对业务的理解以及对于知识图谱本身的设计;设计离不开对业务的深入理解以及对未来业务场景变化的预估;原创 2024-09-19 18:05:49 · 1601 阅读 · 0 评论 -
【人工智能学习笔记】7_智能语音技术基础
声道:录制声音时,在不同的空间位置采集的相互独立的音频信号。声道数也就是声音录制时的音源数量。常见的音频数据为单声道或双声道(立体声)比特率:数据传输单位时间内传输的数据位数,也就是每秒的传输速率。比特率越高,传送数据速度越快。音频采样率:音频采样率是指录音设备在一秒钟内对声音信号的采样次数,采样频率越高,传送数据速度越快。音频采样位数:采样值或取样值,即是将采样样本幅度量化。用来衡量声音波动变化的参数,或是声卡的分辨率。数值越大,分辨率越高,发出声音的能力越强。原创 2024-09-19 16:10:53 · 1719 阅读 · 0 评论 -
【人工智能学习笔记】5 计算机视觉基础
又称为数码图像或数位图像是用一个数字矩阵来表达客观物体的图像;是由模拟图像数字化得到的;是一个离散采样点的集合,每个点具有其各自的属性;是以像素为基本元素的图像;可以用数字计算机或数字电路存储和处理的图像。原创 2024-09-11 20:21:01 · 1420 阅读 · 0 评论 -
【人工智能学习笔记】4_4 深度学习基础之生成对抗网络
一种深度学习模型,通过判别模型(Discriminative Model)和生成模型(Generative Model)的相互博弈学习,生成接近真实数据的数据分布或对输入数据进行分类;近年来复杂分布上无监督学习最具前景的方法之一。原创 2024-09-10 17:45:45 · 557 阅读 · 0 评论 -
【人工智能学习笔记】4_3 深度学习基础之循环神经网络
是一类以序列(sequence)数据为输入,在序列的演进方向进行递归(recursion)且所有节点(循环单元)按链式连接的递归神经网络(recursive neural network),循环神经网络具有短期记忆能力。原创 2024-09-10 16:00:52 · 1356 阅读 · 0 评论 -
[【人工智能学习笔记】4_3 深度学习基础之卷积神经网络
卷积神经网络(Convolutional Neural Network, CNN)一种带有卷积结构的深度神经网络,通过特征提取和分类识别完成对输入数据的判别;在1989年提出,早期被成功用于手写字符图像识别;2012年更深层次的AlexNet网络取得成功,伺候卷积神经网络被广泛应用于各个领域。原创 2024-09-09 18:40:36 · 989 阅读 · 0 评论 -
【人工智能学习笔记】4_2 深度学习基础之多层感知机
激活函数是一种在人工智能神经网络的神经单元上运行的函数,旨在帮助网络学习数据中的复杂模式,负责将神经元节点的输入映射到输出端常见激活函数:Sigmoid函数、Tanh函数、ReLU函数等等。原创 2024-09-09 15:49:17 · 906 阅读 · 0 评论 -
【人工智能学习笔记】4_1 深度学习基础之深度学习概述
深度学习框架的选择往往需要考虑多方面的因素,如学习门槛、上手难度、开发速度、易用性等。原创 2024-09-08 16:20:12 · 795 阅读 · 0 评论 -
【人工智能学习笔记】3_2 机器学习基础之机器学习经典算法介绍
定义:逻辑回归是一种广义线性回归,在线性回归的基础上添加非线性变换,使得逻辑回归输出值为离散值任务类型:分类应用场景:学生考试成绩预测、雾霾天气预测回归任务示例定义:将样本数据升维,使低维非线性可分变为高维线性可分常见的核函数线性核函数径向基核函数多项式核函数Sigmoid核函数。原创 2024-09-08 13:56:51 · 794 阅读 · 0 评论 -
【人工智能学习笔记】3_1 机器学习基础之机器学习概述
定义:通过技术的手段,利用已有的数据(经验)开发可以用来对新数据进行预测的模型主要方向:1.基于学习方式的划分;2.基于学习策略的划分基于学习方式的划分:根据输入的数据是否需要进行标注进行划分有监督学习有监督学习的过程输入数据:为“训练数据”,每组训练数据有明确标识学习过程:将预测过程与“训练数据”的实际结果进行比较,不断调整预测模型,直到模型预测结果达到一个预期的准确率应用场景:分类、回归。原创 2024-09-07 16:53:06 · 612 阅读 · 0 评论 -
【人工智能学习笔记】2_数据处理基础
概念:通过分类、画框、标注等对语音、图片、文本数据进行处理。提高训练的准确度标注分类:语音标注、图片标注、文本标注等具体方法:通过画框描点等方法对数据打标签,给后续处理提供训练信息应用场景:语音识别、无人驾驶、证件识别等场景重要性:准确性、数量影响数据集的质量。原创 2024-09-07 14:38:25 · 297 阅读 · 0 评论 -
【人工智能学习笔记】1_人工智能基础
感知、记忆与思维、学习与适应能力人工智能的定义明斯基:“人工智能是一门科学,是使机器做那些人需要通过智能来做的事情”尼尔森:“人工智能是关于知识的科学”人工智能作为一门学科,是研究、开发用于模拟、延伸和拓展人的智能的理论、方法、技术及应用系统的一门新的技术科学,研究范围包括:机器人、语言识别、图像识别、自然语言处理等…人工智能的历史人工智能的三大学派符号主义学派连接主义学派/仿生学派/生理学派行为主义学派/进化主义/控制论学派人工智能的研究目标。原创 2024-09-06 18:02:09 · 736 阅读 · 0 评论