- 博客(6)
- 收藏
- 关注
原创 卷积、傅里叶级数、傅里叶变换、快速傅里叶变换、pytorch中的fft,rfft
卷积: 连续形式: 离散形式: ‘卷’ : 翻转 和 滑动 ‘积‘: 积分 翻转:g(t) - > g(-t) 滑动:g(-t) - >g(n-t) 平移n个单位 举个例子:信号分析 (摘自(6 封私信 / 10 条消息) 如何通俗易懂地解释卷积? - 知乎 (zhihu.com)) f(t) :输入的信号 g(t):为衰减函数 ,在0时刻的信号,经过T时刻以后,衰减为f(0)g(T) 因为考虑到T时刻的输出信号,会受到前面0,1,,,T-1时...
2021-12-24 11:11:39
8158
原创 程序理解:Neural Operator_ Graph Kernel Network__for Partial Differential Equations
论文:Neural Operator_ Graph Kernel Network__for Partial Differential Equations 代码网址:https://github.com/wumming/graph-pde 对论文中程序的理解: 测试结果:分辨率为31x31 ,radius 为 0.04 (设备有限,只能算这种尺度) UAI1_r31_n100train UAI1_r31_n100test16 UAI1_r31_n1...
2021-12-08 10:41:10
1112
原创 yolov3程序中的一些难点
def helloa(*args,**kargs): lala = {"lala":"lalala"} lala["caca"] = "cacaca" lala.update(kargs) return lala helloa(caca="papa",dada="dada") 运行结果: {'caca': 'papa', 'dada': 'dada', 'lala': 'lalala'} from keras import backend as K input = K.on
2021-06-29 10:50:47
240
原创 机器学习中的模型评价策略metric(ROC,PR,AUC,F1)
TP(真阳性 true positives)TN(真阴性 true negatives) FP(假阳性 false positives) FN(假阴性 false negatives) 混淆矩阵:图一
2021-05-03 17:19:30
1407
2
原创 yolov3详细解释(内附代码详细说明)
这里写目录标题yolo3是如何构想的 并且网络结构是什么样的锚框anchor的含义(锚框anchor的构建用于训练时期 和预测时期)交并比的意义非最大值抑制是什么(用在模型训练完以后,进行预测时)主要的模型model的构建 darknet53 19损失函数loss function 锚框anchor在损失函数中的应用 yolo3是如何构想的 并且网络结构是什么样的 论文地址:https://pjreddie.com/media/files/papers/YOLOv3.pdf yolov3在yolov1和v
2021-04-05 21:22:25
3083
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅