最小生成树克鲁斯卡尔算法和并查集算法:
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
//并查集和克鲁斯卡尔最小生成树模板
struct lujing
{
int x;
int y;
int l;
} lj[100]; //用来存储两节点之间的距离
int root[100],rooth[100];//用来存根还有根深
int found(int x)//寻找根节点
{
int xroot=x;
while(root[xroot]!=0)
xroot=root[xroot];
return xroot;
}
int lian(int x,int y)//判断这两个点是否在同一颗树里
{
int xroot=found(x);
int yroot=found(y);
if(xroot==yroot)//如果两节点在同一棵树中,返回1
return 1;
if(rooth[xroot]>rooth[yroot])//判断这两个根节点的深度,将浅的接入深的当中
root[yroot]=xroot;
else if(rooth[yroot]>rooth[xroot])
root[xroot]=yroot;
else//如果根节点深度相同,随意接入一个根节点,并把这个根节点深度加一
{
root[xroot]=yroot;
rooth[yroot]++;
}
return 0;
}
int cmp(lujing a,lujing b)
{
return a.l<b.l;
}
int mian()
{
int n,m,sum=0;//n表示节点个数,m表示路径个数
cin>>n>>m;
memset(root,0,sizeof(root));
memset(rooth,0,sizeof(rooth));//初始化节点数组跟根深数组
for(int i=0; i<m; i++)
cin>>lj[i].x>>lj[i].y>>lj[i].l;//接收节点跟路径长度
sort(lj,lj+m,cmp);//按照路径长度从小到大将结构体数组进行排序
for(int i=0; i<m; i++)
{
int p=lian(lj[i].x,lj[i].y);//按照顺序将节点接入树中
if(p==0)//如果这两个节点成功接入树中,将路径长度相加
sum+=lj[i].l;
}
return 0;
}
最短路径迪杰斯特拉算法:
void dij(int begin)
{
int i,j,k,l,min;
int use[110],dis[110],par[110];
//use用来存储节点是否访问过,dis用来存储最短路径,par用来存储父节点
for(i=0; i<=n; i++)
{
use[i]=0;
dis[i]=lj[1][i];
par[i]=0;
}//初始化
use[1]=1;
for(i=1; i<=n; i++)
{
k=0;
min=MAX;
for(j=1; j<=n; j++)//用来寻找最短的点
{
if(use[j]==0&&dis[j]<min)
{
min=dis[j];
k=j;
}
}
use[k]=1;
for(l=1; l<=n; l++)//更新dis数组
{
if(use[l]==0&&(dis[l]>dis[k]+lj[k][l]))
{
dis[l]=dis[k]+lj[k][l];
par[l]=k;
}
}
}
cout<<dis[n]<<endl;
}
__int128:
#include <bits/stdc++.h>
using namespace std;
inline __int128 read()//输出
{
__int128 x=0,f=1;
char ch=getchar();
while(ch<'0'||ch>'9')
{
if(ch=='-')
f=-1;
ch=getchar();
}
while(ch>='0'&&ch<='9')
{
x=x*10+ch-'0';
ch=getchar();
}
return x*f;
}
inline void print(__int128 x)//接收
{
if(x<0)
{
putchar('-');
x=-x;
}
if(x>9)
print(x/10);
putchar(x%10+'0');
}
int main(void)
{
__int128 a = read();
__int128 b = read();
print(a + b);
cout<<endl;
return 0;
}
快速幂:
int sp(int x,int n,int mod)//求x^n%mod
{
ll res=1;
while(n>0)
{
if(n&1)
res=res*x%mod;
x=x*x%mod;
n>>=1;
}
return res;
}
GCD求最小公约数:
int gcd(int a,int b)
{
return b==0?a:gcd(b,a%b);
}
素数筛:
int pd[100];//用来判断是否是素数
void qiusu(int n)//求2到n之间的素数
{
memset(pd,0,sizeof(pd));//初始化
for(int i=2;i<=n;i++)
{
//如果循环到i,pd[i]=0,那么i就是素数;如果pd[i]=1,i就不是素数
if(pd[i]!=0)
continue;
cout<<i<<endl;
for(int j=i*2;j<=n;j+=i)//将i的倍数全部赋值为1,表示它们不是素数
pd[j]=1;
}
}