此篇是在牛客网中剑指offer经过测试的两个关于回溯算法的编程题。并不都是自己写的,有见解大神的思路。
- 机器人的活动范围
- 矩阵中的路径
1. 机器人的运动范围
题目描述
地上有一个m行和n列的方格。一个机器人从坐标0,0的格子开始移动,每一次只能向左,右,上,下四个方向移动一格,但是不能进入行坐标和列坐标的数位之和大于k的格子。 例如,当k为18时,机器人能够进入方格(35,37),因为3+5+3+7 = 18。但是,它不能进入方格(35,38),因为3+5+3+8 = 19。请问该机器人能够达到多少个格子?
public class Solution {
public int movingCount(int threshold, int rows, int cols) {
boolean[] visited=new boolean[rows*cols];
return pathCount(visited,threshold,rows,cols,0,0);
}
private int pathCount(boolean[] visited, int threshold, int rows, int cols, int row, int col) {
if(row<0 || row>=rows || col<0 || col>=cols) {
return 0;
}
int n=row*cols+col;
if(visited[n] || !check(row,col,threshold)) {return 0;}
visited[n]=true;
return 1+pathCount(visited,threshold,rows,cols,row+1,col)
+pathCount(visited,threshold,rows,cols,row,col+1)
+pathCount(visited,threshold,rows,cols,row,col-1)
+pathCount(visited,threshold,rows,cols,row-1,col);
}
private boolean check(int i, int j, int threshold) {
int sum=0;
while(i!=0) {
int ys=i%10;
sum+=ys;
i=i/10;
}
while(j!=0) {
int ys=j%10;
sum+=ys;
j=j/10;
}
return sum<=threshold;
}
}
2. 矩阵中的路径
题目描述
请设计一个函数,用来判断在一个矩阵中是否存在一条包含某字符串所有字符的路径。路径可以从矩阵中的任意一个格子开始,每一步可以在矩阵中向左,向右,向上,向下移动一个格子。如果一条路径经过了矩阵中的某一个格子,则之后不能再次进入这个格子。 例如 a b c e s f c s a d e e 这样的3 X 4 矩阵中包含一条字符串"bcced"的路径,但是矩阵中不包含"abcb"路径,因为字符串的第一个字符b占据了矩阵中的第一行第二个格子之后,路径不能再次进入该格子。
public class Solution {
public boolean hasPath(char[] matrix, int rows, int cols, char[] str) {
if(matrix==null || str==null) {
return false;
}
char [][] temp=new char[rows][cols];
int index=0;
//先将数组变为二维矩阵
for(int i=0;i<rows;i++) {
for(int j=0;j<cols;j++) {
temp[i][j]=matrix[index++];
}
}
boolean [][]visited=new boolean[rows][cols];
int pathLength=0;
//先将数组变为二维矩阵
for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
if(hasPathCore(temp,visited,rows,cols,str,i,j,pathLength)) {
return true;
}
}
}
return false;
}
private static boolean hasPathCore(char[][] temp, boolean[][] visited, int rows, int cols, char[] str, int i, int j,
int pathLength) {
boolean flag=false;
if(i>=0 && i<rows&&j>=0 && j<cols&&
!visited[i][j]&& temp[i][j]==str[pathLength]) {
pathLength++;
visited[i][j]=true;
if(pathLength==str.length) {
return true;
}
flag=hasPathCore(temp,visited,rows,cols,str,i,j+1,pathLength)||
hasPathCore(temp,visited,rows,cols,str,i+1,j,pathLength)||
hasPathCore(temp,visited,rows,cols,str,i,j-1,pathLength)||
hasPathCore(temp,visited,rows,cols,str,i-1,j,pathLength);
if(!flag) {
pathLength--;
visited[i][j]=false;
}
}
return flag;
}
}