论文阅读 9 | SELF-SUPERVISED GRAPH NEURAL NETWORKS FOR IMPROVED ELECTROENCEPHALOGRAPHIC SEIZURE ANALYSIS

用于改进脑电图癫痫分析的自监督图神经网络

作者

作者

摘要

  从脑电图(EEG)中自动检测和分类癫痫发作可以大大提高癫痫发作的诊断和治疗。然而,在先前的自动化癫痫发作检测和分类研究中,一些建模挑战仍未解决:(1)表示EEG中的非欧几里得数据结构,(2)准确分类罕见的癫痫发作类型,以及(3)缺乏定量可解释性方法来测量模型定位癫痫发作的能力。在本研究中,我们通过以下方式应对这些挑战(1)使用图形神经网络(GNN)表示EEG中的时空依赖性,并提出捕获电极几何形状或动态脑连接的两个EEG图形结构,(2)提出一种自监督预训练方法,该方法预测下一时间段的预处理信号,以进一步提高模型性能,特别是在罕见癫痫发作类型上,以及(3)提出了一种定量模型可解释性方法来评估模型在EEG中定位癫痫发作的能力。当在大型公共数据集(5499个脑电图)上评估我们的癫痫检测和分类方法时,我们发现我们的自我监督预训练GNN在癫痫检测上达到了 0.875 的受试者操作特征曲线下面积(AUC),在癫痫分类上达到了 0.749 的加权 F1-score,在癫痫检测和归类方面都优于以前的方法。此外,我们的自我监督预训练策略显着改善了罕见癫痫发作类型的分类(例如,与基线相比,组合强直性癫痫发作准确性增加了47个点)。此外,定量可解释性分析表明,我们的具有自我监督预训练的GNN精确定位了25.4%的局灶性癫痫发作,比现有的CNN提高了21.9个百分点。最后,通过将识别的癫痫发作位置叠加在原始EEG信号和EEG图上,我们的方法可以为临床医生提供局部癫痫发作区域的直观可视化。

1 Introduction

  癫痫发作是世界上最常见的神经急症之一。癫痫发作可能是慢性的,就像癫痫一样,癫痫是一种影响全球5000万人的神经系统疾病。临床上,癫痫发作的明确检测只是癫痫发作诊断的第一步。接下来的一个重要步骤是将癫痫发作分为细粒度类型,如局灶性癫痫发作和全身性癫痫发作,以确定癫痫综合征、靶向治疗和癫痫手术的资格。

  头皮脑电图(或“EEG”)在癫痫发作检测和分类中起关键作用。在临床上,基于EEG的癫痫发作检测和分类由经过训练的EEG读取器执行,该EEG读取器在从数小时到数天的时间段内视觉检查患者的EEG信号。然而,这种手动分析是极其资源和时间密集型的,因此自动化算法可以大大加快癫痫发作诊断并改善重症患者的结局。

  尽管大量研究尝试了癫痫发作的自动检测或分类,但仍有一些挑战在很大程度上没有得到解决。首先,最近的研究使用卷积神经网络(CNNs),该网络假设EEG信号或频谱图中的欧几里得结构。然而,欧几里德结构假设忽略了脑电电极的自然几何结构和脑网络的连通性。EEG通过放置在歧管(即患者头皮)上的电极测量(图1a),因此具有固有的非欧几里得结构。图是一种可以表示复杂的非欧几里得数据的数据结构,图论已被广泛用于大脑网络建模。因此,我们假设,基于图形的建模方法可以更好地代表固有的非欧几里德结构的脑电图的方式,提高了癫痫发作检测和分类模型的性能和临床实用性。尽管使用了传统的图论,但只有少数深度学习研究将 EEG 建模为癫痫检测的图。然而,这些基于图表的研究仅限于非公开或小型数据集,没有利用现代自我监督方法或检查癫痫发作分类。

  其次,某些癫痫发作类型(例如阵挛性癫痫发作)本质上是罕见的。使用传统的监督学习方法训练在这些罕见的癫痫发作类别上表现良好的机器学习模型是具有挑战性的,这可以解释先前研究中的主要和少数癫痫发作类型之间的性能差异。几项研究已经调查了替代的自我监督训练策略,但他们没有将EEG建模为图形或解决自动癫痫分类。先前的工作已经表明,自监督预训练显着提高了计算机视觉领域中具有不平衡标签的数据的模型性能。因此,我们假设自我监督的预训练可以帮助提高我们的图模型在罕见癫痫发作类型上的性能。此外,EEG信号的大部分通常不具有癫痫发作。自我监督的预训练策略将允许模型利用数据集中容易获得的丰富的非癫痫发作EEG。

  最后,对于癫痫发作检测和分类模型,不仅能够在所有EEG通道上提供单一预测,而且能够提供可解释性和定位癫痫发作的能力,这将在临床上有助于为治疗策略提供信息。虽然先前的研究显示了模型可解释性的定性可视化,但没有一项研究定量评估了模型定位癫痫发作的能力。

图1
  图1:(a)标准10-20系统中的脑电图电极放置。(b) 基于距离的脑电图图。(c) 一个基于相关性的脑电图图示例。(d) 我们的方法概述。模型的输入是EEG图,其中每个节点特征对应于相应通道中的预处理的EEG信号。为了更好地可视化,未显示自边缘。

  在这项工作中,我们旨在解决先前自动癫痫检测和分类研究中的这些局限性。首先,我们提出了一种基于图的癫痫发作检测和分类建模方法。具体而言,我们提出了两种EEG图结构,用于捕捉EEG传感器几何结构(图1b)或动态大脑连接(图1c),并扩展了扩散卷积递归神经网络(DCRNN),一种具有图扩散卷积的RNN,以对EEG中的时空依赖性进行建模(图1d)。其次,我们使用自监督预训练策略来提高 DCRNN 的性能,该策略预测下一个时间段的预处理EEG信号,而不需要额外的数据或标签。最后,我们提出了定量指标来评估我们的模型定位癫痫发作的能力。综上所述:

  • 我们提出了两种EEG图结构,它们捕获了(1)EEG传感器的自然几何形状或(2)大脑中的动态连接,并表明基于这些表示构建的递归图神经网络(GNN)产生的癫痫发作检测和分类模型在大型公共数据集(5,499个EEG)上优于先前的方法。
  • 我们提出了一种自我监督的预训练策略,以进一步提高我们的递归GNN模型的性能,特别是对罕见的癫痫发作类型。据我们所知,我们的研究是迄今为止第一个将基于图的建模和自我监督的EEG预训练相结合的研究。通过利用图结构和自我监督,我们的方法在癫痫发作检测上实现了0.875的受试者操作特征曲线下面积(AUROC),在癫痫发作分类上实现了0.749的加权F1-score,在这个大型公共数据集上的癫痫发作检测和分类上都优于先前的方法。此外,我们的自我监督预训练方法大大改善了罕见癫痫发作类型的分类(例如,与基线相比,组合强直性癫痫发作准确性增加了47个点)。
  • 我们提出了一种定量模型可解释性分析,可用于评估模型定位癫痫发作的能力,这对确定癫痫发作的治疗过程至关重要。我们表明,通过利用图结构和自我监督,我们的方法精确定位了25.4%的局灶性癫痫发作,提供了21.9个百分点的改善比现有的国家的最先进的CNN。最后,通过在原始EEG信号和EEG图上显示识别的癫痫发作区域,我们的方法可以提供有价值的见解,支持在真实世界临床设置中更有效的癫痫发作诊断。

2 Methods

Semi-supervised classification with graph convolutional networks (GCNs) is a method for predicting labels for nodes in a graph. GCNs are a type of neural network that operates on graph-structured data, where each node in the graph represents an entity (such as a person, a product, or a webpage) and edges represent relationships between entities. The semi-supervised classification problem arises when we have a graph where only a small subset of nodes have labels, and we want to predict the labels of the remaining nodes. GCNs can be used to solve this problem by learning to propagate information through the graph, using the labeled nodes as anchors. The key idea behind GCNs is to use a graph convolution operation to aggregate information from a node's neighbors, and then use this aggregated information to update the node's representation. This operation is then repeated over multiple layers, allowing the network to capture increasingly complex relationships between nodes. To train a GCN for semi-supervised classification, we use a combination of labeled and unlabeled nodes as input, and optimize a loss function that encourages the network to correctly predict the labels of the labeled nodes while also encouraging the network to produce smooth predictions across the graph. Overall, semi-supervised classification with GCNs is a powerful and flexible method for predicting labels on graph-structured data, and has been successfully applied to a wide range of applications including social network analysis, drug discovery, and recommendation systems.
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值