学习任务:
Leetcode122.买卖股票的最佳时机II
难度:中等 | 相关标签:贪心、数组、动态规划
-
题目: 给你一个整数数组 prices ,其中 prices[i] 表示某支股票第 i 天的价格。
在每一天,你可以决定是否购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以先购买,然后在 同一天 出售。
返回 你能获得的 最大 利润 。 -
思路: 局部最优:收集每天的正利润,全局最优:求得最大利润
-
注意:
-
代码:
class Solution {
public int maxProfit(int[] prices) {
int sum = 0;
for(int i = 0; i < prices.length-1; i++){
sum = sum + Math.max(0, prices[i+1]-prices[i]);
}
return sum;
}
}
- 反思:
Leetcode55. 跳跃游戏
难度:中等 | 相关标签:贪心、数组、动态规划
-
题目: 给你一个非负整数数组 nums ,你最初位于数组的 第一个下标 。数组中的每个元素代表你在该位置可以跳跃的最大长度。
判断你是否能够到达最后一个下标,如果可以,返回 true ;否则,返回 false 。 -
思路: 跳几步无所谓,关键在于可跳的覆盖范围!问题就转化为跳跃覆盖范围究竟可不可以覆盖到终点!
- 局部最优解:每次取最大跳跃步数(取最大覆盖范围),整体最优解:最后得到整体最大覆盖范围,看是否能到终点。
-
注意:
-
代码:
class Solution {
public boolean canJump(int[] nums) {
int cover = 0;
if(nums.length == 1){
return true;
}
for(int i = 0; i <= cover; i++){
cover = Math.max(i+nums[i], cover);
if(cover >= nums.length-1){
return true;
}
}
return false;
}
}
- 反思:
Leetcode45.跳跃游戏II 跳过
难度:中等 | 相关标签:贪心、数组、动态规划
- 题目: 给定一个长度为 n 的 0 索引整数数组 nums。初始位置为 nums[0]。
每个元素 nums[i] 表示从索引 i 向前跳转的最大长度。换句话说,如果你在 nums[i] 处,你可以跳转到任意 nums[i + j] 处:- 0 <= j <= nums[i]
- i + j < n
返回到达 nums[n - 1] 的最小跳跃次数。生成的测试用例可以到达 nums[n - 1]。
-
思路:
-
注意:
-
代码:
- 反思:
Leetcode1005.K次取反后最大化的数组和
难度:简单 | 相关标签:贪心、数组、排序
-
题目: 给你一个整数数组 nums 和一个整数 k ,按以下方法修改该数组:
选择某个下标 i 并将 nums[i] 替换为 -nums[i] 。
重复这个过程恰好 k 次。可以多次选择同一个下标 i 。
以这种方式修改数组后,返回数组 可能的最大和 。 -
思路:
- 第一步:将数组按照绝对值大小从大到小排序,注意要按照绝对值的大小
- 第二步:从前向后遍历,遇到负数将其变为正数,同时K–
- 第三步:如果K还大于0,那么反复转变数值最小的元素,将K用完
- 第四步:求和
-
注意:
- 贪心的思路,局部最优:让绝对值大的负数变为正数,当前数值达到最大,整体最优:整个数组和达到最大。
- 又是一个贪心:局部最优:只找数值最小的正整数进行反转,当前数值和可以达到最大(例如正整数数组{5, 3, 1},反转1 得到-1 比 反转5得到的-5 大多了),全局最优:整个 数组和 达到最大。
-
代码:
class Solution {
public int largestSumAfterKNegations(int[] nums, int k) {
// 排序
Arrays.sort(nums);
// 从前向后遍历,遇到负数将其变为正数,同时K--
for(int i = 0; i < nums.length && k > 0; i++){
if(nums[i] < 0){
nums[i] = -nums[i];
k--;
}
}
// 如果K还大于0,那么反复转变数值最小的元素,将K用完
if(k % 2 == 1){
Arrays.sort(nums);
nums[0] = -nums[0];
}
int sum = 0;
for (int num : nums) { // 计算最大和
sum += num;
}
return sum;
}
}
- 反思:
1145

被折叠的 条评论
为什么被折叠?



